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Fig. 1. Animation Design of "Sky Dancers" with Progressive Dynamics: (Left) With Progressive Dynamics’s efficient, coarsest-level previewing, artists
quickly explore a wide palette of physical design parameters (e.g., material, layout, wind forcing) to produce numerous variations of a "Sky Dancers" animation
concept. Once finalized in preview, we refine the selected animation (green-boxed) to higher-resolutions (Right) maintaining the overall physical behavior of
the animation while progressively enriching it with finer-scale rich dynamic wrinkling behaviors. (Bottom) The finest-level solution elevates the selected
coarse-scale preview to a final, polished, high-quality animation ready for screen display that preserves the preview’s physical narrative.

We propose Progressive Dynamics, a coarse-to-fine, level-of-detail sim-
ulation method for the physics-based animation of complex frictionally
contacting thin shell and cloth dynamics. Progressive Dynamics provides
tight-matching consistency and progressive improvement across levels, with
comparable quality and realism to high-fidelity, IPC-based shell simulations
[Li et al. 2021] at finest resolutions. Together these features enable an effi-
cient animation-design pipeline with predictive coarse-resolution previews
providing rapid design iterations for a final, to-be-generated, high-resolution
animation. In contrast, previously, to design such scenes with comparable
dynamics would require prohibitively slow design iterations via repeated
direct simulations on high-resolution meshes. We evaluate and demonstrate
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Progressive Dynamics’s features over a wide range of challenging stress-
tests, benchmarks, and animation design tasks. Here Progressive Dynamics
efficiently computes consistent previews at costs comparable to coarsest-
level direct simulations. Its matching progressive refinements across levels
then generate rich, high-resolution animations with high-speed dynamics,
impacts, and the complex detailing of the dynamic wrinkling, folding, and
sliding of frictionally contacting thin shells and fabrics.
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1 INTRODUCTION
We present Progressive Dynamics, a coarse-to-fine, level-of-detail,
physics-based animation method and design pipeline that provides
rapid (and so practical) coarse-resolution previews of frictionally
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Fig. 2. A Smashing Inflated Ball. Direct simulations on coarse-resolution
meshes (Bottom) often fail outright, because of severe locking artifacts,
whereas Progressive Dynamics (PD) (Top) provides high-quality previews
on the same coarse meshes.

contacting thin shell and cloth dynamics with progressive improve-
ment to much higher-resolution animations of complex dynamics
with comparable quality and realism to high-fidelity shell simulation
output. To enable this workflow and to provide effective animation
design cycles, we construct a progressive simulation method for
dynamics that generates coarse preview trajectories that closely
match (and so are highly predictive of) each following progressive
refinement of the animation at finer resolutions.

Specifically, to avoid prohibitively expensive high-resolution de-
sign cycles, Progressive Dynamics generates animated sequences
that improve physical quality (i.e., finer wrinkling, buckling, contact
compliance, and geometric detail) at each increasing level of refine-
ment. In turn, in order to provide useful previewing, bulk trajecto-
ries generated by Progressive Dynamics do not diverge across these
levels of resolution—even over very long time-spans. This allows
designers to efficiently explore a wide range of animation variations
across physical and geometric design parameters at coarse levels,
before safely investing in computing a final, matching, highest-
resolution animation.

Progressive Dynamics thus complements priormethods in physics-
based animation design (see Section 2) that employ combinations
of control, enrichment and/or tracking to augment prescribed in-
put shapes and sequences with enhanced physical realism. Such
methods work to balance satisfaction between starting input and
the physically based changes applied. Offering various trade-offs
between these two extremes (e.g., via orthogonality, displacement,
and constraints) provides numerous powerful modes for animation
design. However, in all such methods, there is a common tension
that must be navigated between satisfaction of the user input and
the changes applied to them by the physical model enrichment. At
the same time, because these methods are additive and/or constraint-
based they do not offer the opportunity to capture the complex and
rich coupling between material variations, fine-detail dynamics,
and the underlying overall trajectories taken by a system [Chen
et al. 2021a, 2023]. For example, changes in materials and folding
patterns can drive a colliding body in an entirely different direction
than originally envisioned (e.g., Figures 22, 10 and 9) while even
subtle material variations (e.g, Figure 3) change the overall shape of
frames—not just their wrinkling details.

As a complementary alternative, direct simulations of shell and
cloth models by construction capture, and so allow animators to
explore, the rich variations in dynamics generated by changing ma-
terials, geometries, scenes, and conditions. At the same time, direct
simulation provides a seamless full coupling of dynamics across
scales, ranging from the fine-scale detailed evolution of wrinkle
patterns, contacts, and folds to the large-scale evolution of shape
and trajectory. However, the catch is that employing direct simu-
lation for design has previously required slow, high-fidelity sim-
ulations employing high-resolution meshes. To circumvent this
obstacle, previs tools enabling artists to quickly set up and iterate
over physics-based animations with fast, low-accuracy methods and
low-resolution models have long been employed. However, their
utility has been restricted by two common, fundamental, and well-
documented [Bergou et al. 2007; Zhang et al. 2023] limitations: 1)
final (compute-heavy) high-res hero simulations based on previs
designs are not consistent and instead regularly generate entirely
different results than their carefully designed, low-resolution start-
ing points (see, e.g., Figure 4); and 2) fast low-res shell simulations
employed for previs often generate significant artifacts, instabilities
and errors that can preclude their use entirely for many real-world
materials and settings (see, e.g., Figure 2).

To remove these restrictions and enable effective LOD simulation-
based animation-design workflows for all shell materials, we begin
with recent prior work in progressive simulation that enable the
multi-resolution design of static cloth and shell drapes [Zhang et al.
2023, 2022] across a hierarchy of increasingly finer triangle meshes
with high-quality IPC [Li et al. 2021] shell simulation. In this work,
we extend the progressive simulation framework from the modeling
of just static scenes to the LOD animation of high-quality finely
detailed frictionally contacting shell and cloth dynamics.
Extending the progressive simulation framework to shell and

cloth animations requires addressing three core challenges. First,
how do we generate lowest-level preview simulations of dynamics
with small numbers of DOF that avoid the aforementioned coarse-
mesh shell simulation artifacts and instabilities? Second, how do we
ensure that the frames generated by these same, low-DOF previews
maintain close configuration matching, per time step, across levels
of resolution all the way up to their corresponding highest-quality
animation frames, generated by finest-resolution dynamics? Third,
as discussed above, matching across resolutions is fundamentally
at odds with providing unconstrained, high-quality enrichment of
physical details and a natural flow of dynamics across frames at
each level. How can we balance consistency per frame across levels
while maintaining causality and avoiding collision tunneling and
jumps in state, per level?

Contributions. Progressive Dynamics addresses these challenges
by enabling rapid, predictive exploration of design parameters at
coarse levels without standard low-resolution simulation artifacts,
while regaining the expressiveness of high-quality cloth and shell
simulation methods as refinement is applied to progressively finer
levels of resolution. As we show in our evaluation, exceedingly close
matches per frame are preserved across resolutions, even over long
animation time spans of highly sensitive (e.g., high-speed, contact
rich, and stiff) physical behaviors. At the same time, consistency
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Fig. 3. Progressive Design Cycle. Left: quick explorations of design variations with Progressive Dynamics’ coarse-resolution previewing, allows an artist to
rapidly find the “just-right“ layout and parameters for a lively Toy Toss with a sad, final face plant. Once found, progressive refinement simulates increasingly
rich details over levels to produce a final animation respecting the initial design. In Figure 4 we attempt this same animation task with direct simulation tools.

across levels, per time step, is maintained without obstructing the
temporal continuity and coherence of animations across frames. To
do so, our core technical contributions include
• A new, simple, and efficient implicit time-stepping method for
coarsest-scale high-quality previewing of fine-scale shell dynam-
ics that significantly mitigates standard coarse-scale artifacts;
• A multi-resolution progressive formulation and prolongation
model for shell dynamics on triangle mesh hierarchies; and
• A progressive dynamics LOD time-step and refinement algorithm
for advancing shell and cloth animation sequences in time and
resolution with both tight consistency across mesh-resolution
levels per time-step, and coherence across each level’s time steps.

We evaluate these features over a wide range of examples, stress
tests, and comparisons—demonstrating that Progressive Dynamics
now enables the rapid design of lively, realistic, and highly specific
detailed material behaviors and trajectories to support the creation
of animated physical narratives.

2 RELATED WORK

2.1 Thin Shell Simulation
The intricate wrinkling, buckling, and draping dynamics of thin
shell materials and cloth fabrics have long played a fundamental
role in animation. Artists seek to capture the lively, detailed, and
highly specific (“just right”) behaviors of these real-world materials
to support their vision.
With these goals in mind, thin-shell simulation has remained

a long-standing research focus in computer graphics [Baraff and
Witkin 1998; Bridson et al. 2002; Grinspun et al. 2003; Harmon et al.
2009; Li et al. 2020b; Narain et al. 2012; Terzopoulos et al. 1987;
Volino and Thalmann 2000]. As we do in this work, modern shell
simulation methods largely adopt implicit time-stepping methods
[Baraff andWitkin 1998; Bridson et al. 2002; Kim 2020; Li et al. 2020b,
2018; Narain et al. 2012; Otaduy et al. 2009; Tang et al. 2016, 2018]

to provide stable numerical integration, with enhancements applied
to jointly improve contact processing and limit strain [Bridson et al.
2002; Goldenthal et al. 2007; Harmon et al. 2008; Li et al. 2021; Narain
et al. 2012].
It remains an open challenge to simulate shells with combined

high quality and high speed. High-speed methods [Bender et al.
2013; Bouaziz et al. 2014; Daviet 2020; Li et al. 2020b; Ly et al. 2020;
Schmitt et al. 2013; Selle et al. 2008; Tang et al. 2013, 2016, 2018;Wang
2021; Wu et al. 2020; Zhang et al. 2019] trade fidelity, controllability,
and expressiveness for speed. This same theme is also reflected in
commercial cloth simulation tools [Designer 2022; SideFX 2024]
as well [Li et al. 2021; Zhang et al. 2022], e.g., see Figure 4. Corre-
spondingly, increasingly high-quality models and methods for shell
simulation provide ever-improving animations of rich cloth and
shell behaviors [Chen et al. 2018a; Clyde et al. 2017; Guo et al. 2018;
Harmon et al. 2009; Jiang et al. 2017; Li et al. 2018, 2021; Miguel et al.
2012; Narain et al. 2013, 2012; Vouga et al. 2011; Weischedel 2012]
but generally come with the cost of an increased compute budget.

Progressive Simulation. The recently developed progressive simu-
lation framework [Zhang et al. 2023, 2022] balances between these
two extremes by allowing interactive exploration of design param-
eters with coarse preview simulations of shell equilibria for static
modeling. The framework then computes a progressive nonlinear
refinement to finer-level meshes once the coarse-preview model has
been finalized. At the finest-level of resolution, prior progressive
work delivers a final, fully converged solution to the underlying shell
equilibrium model. In contrast, to enable exploratory physics-based
animation design, we extend the progressive simulation framework
from statics to dynamics. At the same time, we develop a method
custom-suited for animation workflows, focusing on rapid gener-
ation of predictive coarse animations, progressing to high-quality
realism in our finest-level animation results, without the constraint
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that the trajectories generated match a converged, numerical time-
integration model.

Multigrid Methods. The progressive simulation framework is orig-
inally inspired [Zhang et al. 2022] by Sensitive Couture’s [Umetani
et al. 2011] application of a Cascadic multigrid [Bornemann and
Deuflhard 1996] for hierarchical and successive solutions of draped
equilibria. In turn, multigrid methods are applied more broadly to
accelerate a wide range of linear-system solves, as when solving
Newton-type problems for shell models [Tamstorf et al. 2015; Wang
et al. 2018; Xian et al. 2019]. We note that multigrid methods largely
focus on accelerating the inner-loop solves within time-step solvers,
and so are complementary to progressive simulation methods. For
Progressive Dynamics, they could be applied to accelerate the so-
lution of the linear problems that we process within each Newton
iteration, at each level of our progressive solver.

2.2 Enrichment, Tracking and Constraints
To complement physical simulation methods, a diverse toolkit of
physics-based methods have been developed to help animators de-
sign and finalize complex cloth animations by employing varying
combinations of enrichment, tracking, and/or constraint-based con-
trol.

Tracking-based Enrichment. A wide range of methods have been
developed to synthesize shell-like wrinkles on a coarser starting
base surface. When this input is in the form of art-directed low-
resolution animation sequences (either coarsely simulated or created
by animators), tracking methods have been developed which use
carefully designed constraints that track the deforming input shape
while allowing enrichment with simulated finer-resolution wrin-
kling details. The TRACKS method [Bergou et al. 2007] augments
fine-mesh simulations with moment-based constraints that track the
input animated geometries in an average sense while solving shell
simulation subject to those constraints. Remillard and Kry [2013]
and Wrinkle Meshes [Müller and Chentanez 2010] similarly apply
tracking strategies to wrinkle-augment the skin and cloth of ani-
mated characters via constraints that couple shell layers and patches
to input animated base meshes. While tracking provides a power-
ful and effective way to combine animation intent with physically
based wrinkle synthesis, animators must rig their constraints (or
else apply heuristics to do so) for each animation. In turn, changes
in rigging constraint choices, for example the decomposition of
surfaces into subdomains for the weighted-average constraints in
TRACKS, generate input-sensitive animation enhancements, with
hard-to-predict changes [Zhang et al. 2020]. At the same time, the
tracking constraints themselves do not ensure that art-directed de-
formations in the coarse input will be maintained by the final fine
result [Bai et al. 2016]. Likewise, to animate realistic shell dynam-
ics a source coarse-mesh simulation for base animation must be
generated which will necessarily have significant coarse animation
artifacts (see Section 4.2). Solutions at finer scales will inherit these
artifacts and can generate non-physical wrinkling patterns (e.g.,
wrinkles on wrinkles) and overall geometries [Chen et al. 2023].

Complementary and Direct Enrichment. To address the above chal-
lenges in tracking methods, the recently developed Complementary

Dynamics [Benchekroun et al. 2023; Zhang et al. 2020] method ap-
plies an alternative approach in which physically simulated enrich-
ment is instead constrained to be orthogonal to a rigged animation’s
kinematics. This ensures that all additional dynamic enrichment
modifies only remaining, free DOF, and so respects animator in-
tent. This provides an intuitive and direct tool for physics-based
animation design. However, when it comes to shells and cloth, it
remains challenging to define a base rigging that is suitably orthogo-
nal to wrinkle enrichment. In part answering this implicit question,
a natural and broadly applied solution has long been to effectively
treat art-directed input coarse surfaces as a base kinematics. Wrin-
kle displacements away from this surface, for example, through
normal maps [Lähner et al. 2018] or displacements [Chen et al.
2018b, 2021c,a, 2023; Santesteban et al. 2019; Zhang et al. 2021], are
then treated as the “complementary” subspace. However, all such
methods are fundamentally one-way coupled and so restrict en-
richment to leave the overall underlying dynamics oblivious to and
unchanged by changing surface behavior. In particular, it remains
an open challenge to resolve dynamic interactions and self-contacts
with these representations [Chen et al. 2021a]. Likewise in this di-
rection are a range of fast, physically motivated post-processing
methods [Gillette et al. 2015; Rohmer et al. 2010] that generate sur-
face wrinkling via direct coarse-input deformation analysis—here,
as in tracking methods, final wrinkle augmentation results then
vary with the user parameter choice (e.g., choice of wrinkle size),
rather than from the underlying physics of a shell model simulation.

Data-Driven Direct Enrichment. Along with the above empirical
techniques, direct enrichment via learned wrinkling offers another
powerful tool for physically based wrinkle augmentation. Fine wrin-
kle enrichments derived from both real-world motion capture [Läh-
ner et al. 2018] and large collections of synthetic high-resolution
simulations [Kim et al. 2013] have both been explored. A common
target for these applications is a restricted domain of learned de-
formations, e.g., adding enrichment to a space of deformations for
a parameterized garment conditioned on the learned kinematics
of a draped shape [Hahn et al. 2014; Santesteban et al. 2019; Wang
et al. 2010]. Even more broadly, upsampling has been learned for
general geometric enrichment of details without conditioning on
an underlying shape [Chen et al. 2021b; Kavan et al. 2011; Lee et al.
2019; Oh et al. 2018; Seiler et al. 2012]. This is a rapidly evolving
and highly active area. However, along with the above-discussed
general limitations in direct enrichment, these methods often still
demonstrate commonly encountered issues in data-driven enrich-
ment strategies: artifacts appear and quality degrades as methods
are applied to synthesize beyond the scope of their data, synthesized
wrinkle quality and resolution is generally much lower quality than
that produced by direct capture and high-fidelity simulation, and,
when it comes to dynamics, temporal coherence is often lost in the
final result.

Spacetime Constraints. Spacetime control methods [Witkin and
Kass 1988] are a natural complement to tracking strategies. Rather
than constraining physical enrichment to track an animated surface
well-defined in time, spacetime strategies instead constrain physics-
based animation to hit target keyframes, sparsely distributed in
time. Here, the fundamental balancing act, in all such spacetime
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optimization problems [Popović et al. 2003], is that either physical
plausibility (i.e., shell dynamics in our case) can be a soft objective
and the targets can be treated as constraints, or vice versa. Most
methods adopt the former strategy for an as-physical-as-possible
interpolation between frames. Nevertheless, as with many compa-
rable interpolation problems, in-betweened trajectories are often
brittle: they can generate surprisingly non-physical and hard-to-
control trajectories as artists change and fine-tune their animations
with unlikely targets and increased keyframe numbers. At the same
time, notwithstanding many recent performance improvements
[Barbič et al. 2009; Hildebrandt et al. 2012; Li et al. 2014; Schulz et al.
2014], the costs of large-scale spacetime optimizations (required
after every artist refinement) for fine-resolution cloth dynamics are
prohibitively expensive.

3 BACKGROUND: PROGRESSIVE QUASISTATICS
Zhang et al. [2023; 2022] recently introduced the progressive sim-
ulation framework for hierarchical coarse-to-fine, LOD modeling
of complex frictionally contacting, shell and cloth equilibria on hi-
erarchies of triangle-meshed geometries. Progressive quasistatics
applies quasistatic stepping in a coarsest-level preview mode to
discover local stable equilibria approximations and then generates
consistent and improving solutions of this equilibrium shape over
the hierarchy’s increasingly finer-resolution meshes. This process
ends, at the finest level, with a converged, high-fidelity C-IPC [Li
et al. 2021] simulation solution of the (at rest) equilibrium system,
on the hierarchy’s highest-resolution mesh.

3.1 Hierarchy
For progressive simulation, a multi-resolution mesh hierarchy is
constructed from the input geometry of the modeled system [Zhang
et al. 2023]. The hierarchy is a collection of improving-resolution
triangle meshes and a corresponding set of prolongation operators,
each mapping to the next finer-resolution mesh. The meshes in
the hierarchy are indexed in increasing resolution by subscript
𝑙 ∈ [0, 𝐿]. At level 𝑙 we denote the undeformed (rest) and deformed
positions of the mesh nodes as 𝑥𝑙 and 𝑥𝑙 ∈ R3𝑛𝑙 respectively, where
𝑛𝑙 is the number of nodes at level 𝑙 . Each level 𝑙 is equipped with
a prolongation operator, 𝑃𝑙

𝑙+1 (·), that maps nodal positions and
associated surface quantities from the current to the next level,
𝑙 + 1. To simplify the discussion, throughout, when clear, we will
designate finest-level resolution quantities without decoration so
that, e.g., 𝑥 =𝑥𝐿 , 𝑥 =𝑥𝐿 and 𝑛=𝑛𝐿 .
Each simulation mesh1 is modeled with shell (Ψ), contact bar-

rier (𝐵), friction (𝐷), and, when required, strain-limiting potential
energies (𝑆) to compute the stable equilibria of frictionally contact-
ing shells subject to imposed boundary conditions and external
forces. These are the local (constrained) minimizers of the total
potential energy constructed from the sum of the above potentials,
𝐸𝑙 = Ψ𝑙 + 𝐵𝑙 + 𝐷𝑙 + 𝑆𝑙 .

1Throughout this work we apply Neo-Hookean membrane [Vouga 2024] and discrete-
hinge bending [Grinspun et al. 2003; Tamstorf and Grinspun 2013] for shell elastics,
and C-IPC [Li et al. 2021] barriers for contact, friction and strain limiting.

3.2 Per-Level Proxy Energies and Prolongation
At each coarsened level 𝑙 < 𝐿, the progressive quasistatic frame-
work computes improving approximations of the final equilibrium
geometry by computing minimizers of a proxy for the finest-level’s
potential energy,

𝐹𝑙 (𝑥𝑙 ) = 𝐵𝑙 (𝑥𝑙 ) + 𝐷𝑙 (𝑥𝑙 ) + 𝑆𝑙 (𝑥𝑙 )︸                         ︷︷                         ︸
𝐶𝑙 (𝑥𝑙 )

+Ψ𝐿
(
𝑃𝑙 (𝑥𝑙 )

)
. (1)

Here, the proxy 𝐹𝑙 , in contrast to 𝐸𝑙 above, allows coarsened levels to
directly evaluate shell elastics at the finest resolution model, Ψ𝐿 , via
a direct prolongation, 𝑃𝑙 (𝑥𝑙 ), from level 𝑙 up to the finest scale, while
coarse barrier-based potential terms in 𝐶𝑙 (𝑥𝑙 ) efficiently enforce
contact and strain-limit feasibility directly on the current level-𝑙 ’s
updated geometry.

Zhang et al.[2023] construct a new nonlinear prolongation oper-
ator through the construction of decimation-based, fine-to-coarse
hierarchies customized for shell simulation (both curved and flat
geometries) that enables progressive simulation preserving the rest
shape of all input triangle-meshed geometries. The per-level opera-
tors,

𝑃𝑙𝑙+1 (𝑥𝑙 ) = 𝑈 𝑙
𝑙+1𝑥𝑙 + 𝑎𝑙𝑙+1 (𝑥𝑙 ) (2)

(and the corresponding direct operators, 𝑃𝑙𝐿 = 𝑃𝑙 ), each composed
of the sum of a (sparse) linear intrinsic [Liu et al. 2021] map,𝑈 , and
an extrinsic nonlinear offset, 𝑎(·), significantly improve over Zhang
et al.’s [2022] originally proposed subdivision-based operator.

3.3 Refinement with Safe Initialization
When finalizing an update of the equilibrium solution at a level
𝑙 < 𝐿, refinement to the next level, 𝑙 + 1, requires finding a feasible
(non-interpenetrating and strain-limit satisfying) starting point for
the next level’s solve, close to the current level 𝑙 ’s converged so-
lution, 𝑥∗

𝑙
. Notice that just directly prolonging to the next level,

𝑃𝑙
𝑙+1 (𝑥∗𝑙 ), would disregard contacts and strain limits, and there-
fore introduce unacceptable intersections and violate strain limits
[Zhang et al. 2022]. Zhang et al. [2023] provide safe refinement with
an efficient, shape-preserving edge-expansion-based upsampling
and strain-limit relaxation that ensures feasibility for each refine-
ment level in the progressive framework’s decimation-constructed
fine-to-coarse hierarchy. This, in turn, provides initialization close
to the prolongation of the just-completed prior level’s solution, so
that progressive refinement towards the equilibrium solution can
remain feasible across all levels of the hierarchy.

4 PROGRESSIVE DYNAMICS

4.1 Formulation
To extend the progressive simulation framework to Progressive Dy-
namics we broaden scope to consider both progressive improvement
in spatial resolution (as in Zhang et al. [2023; 2022]) and forward
dynamics in time. Our full state is now described by a space-time
(multi-resolution) grid with spatially discretized positions, 𝑥𝑡

𝑙
, and

velocities, 𝑣𝑡
𝑙
, at each grid point (𝑡, 𝑙) corresponding to time step
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Fig. 4. It’s a Toy Toss between Vellum and Direct IPC Simulation, compared to Progressive Dynamics. Even moderate changes in resolution make a
huge differences in simulation outcomes for both fast simulation methods like Vellum’s PBD (Left), and FE-based direct simulation with IPC (Middle)—here
they change a carefully tuned toss through hoops at coarsest-level (Top row for each method) into a failed mission (Middle and Bottom rows for each method).
In contrast, Progressive Dynamics (Right) obtains the same consistent, coarse-level designed trajectory at all level’s resolution (all rows).
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We say that Progressive Dynamics advances in the grid horizontally
by forward-stepping system dynamics from time step 𝑡 to 𝑡 + 1 at
a level 𝑙 , and vertically by progressive refinement from resolution
level 𝑙 to 𝑙 + 1.

4.2 Per-level Time Stepping
We start by recalling that forward time stepping of frictionally con-
tacting shell dynamics can be cast variationally for a wide range of
implicit numerical time integration methods as the minimization of
an incremental potential (IP) [Li et al. 2020a, 2021; Ortiz and Stainier
1999]. Concretely, for a fixed discretization level 𝑙 , an implicit Euler
time step is solved by the minimization,

𝑥𝑡+1𝑙 = argmin
𝑥

1
2ℎ2 | |𝑥 − 𝑥

𝑡
𝑙 | |2𝑀𝑙

+ 𝐸𝑙 (𝑥), (3)

where ℎ is time step size, 𝑀𝑙 is the level-𝑙 ’s mass matrix, 𝐸𝑙 is the
level’s above-defined total potential energy (with body and external
forcing added), and 𝑥𝑡

𝑙
= 𝑥𝑡

𝑙
+ ℎ𝑣𝑡

𝑙
, is the explicit momentum update

component of the time-step solve. Alternatives, e.g., BDF2 or implicit
Newmark, follow similarly.
Naive, direct simulation for progressive dynamics by stepping

each level 𝑙 individually with Equation 3, as discussed above in
Section 2, can generate significant and unacceptable simulation
artifacts at coarse levels and simulation trajectories that widely
diverge across levels. E.g., see Figures 4, 2, 10, 14, 16, 9 and 19, and
our analysis in Section 5. This means that coarse-resolution frames
will not match fine, and can not be used for designing high-quality,
fine-resolution animation sequences.

So, how do we generalize to multilevel progressive time stepping?
Our first goal is to provide high-quality unconstrained previews
of dynamics at our coarsest resolutions. To do so, we first observe
that direct coarse model time stepping, as in Equation 3 above, is
oblivious to the finer-level models in our hierarchy. So, to enrich our
coarse time stepping with fine-level material information, we follow
Zhang et al. [2022] and similarly evaluate shell elastic energies from
the finest-resolution model in our hierarchy via direct prolongation
(see Equation 2) with Zhang et al.’s [2023] shell-customized PSQ
upsampling operator, 𝑃𝑙 (), in each of our time step solves. For im-
plicit Euler, this amounts to simply solving each time step with a
modified coarse-and-fine prolonged IP,

𝑥𝑡+1𝑙 = argmin
𝑥

1
2ℎ2 ∥𝑥 − 𝑥

𝑡
𝑙 ∥2𝑀𝑙

+𝐶𝑙 (𝑥) + Ψ𝐿
(
𝑃𝑙 (𝑥)) . (4)

where, recalling from Section 3.2 above, Ψ𝐿 is the total fine-level
shell elastics potential and 𝐶𝑙 the sum of remaining current level-𝑙
contact and strain-limiting potentials for the physical system.

Discussion. The prolonged IP in Equation 4 is a simple and natural
extension of Zhang et al.’s coarse-level quasi-static stepping model
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Fig. 5. Dynamically Draping. Progressive Dynamics generates consistent
frames of cloth while progressively improving the wrinkle and wrap of the
frames at each level of resolution.

for computing equilibria [2022] extended to dynamics2. However,
we note a critical distinction with implications for our final method.
For animation, our output at each level is, of course, a sequence
of animation frames. As such, we require high-quality geometry
output for all time-step solves; therefore, we solve time steps to
low-tolerance accuracy with multiple Newton iterations. In contrast,
Zhang et. al [2022] apply quasi-static stepping just to compute a
final, at-equilibrium shape via a sequence of low-accuracy quasi-
static time steps, and so apply just a small, fixed-numbers of Newton
iterations (generally just one [Zhang et al. 2023]) per time-step solve,
until convergence to a final, accurate equilibrium shape model is
reached.

With these changes in place, we see that, consistent with Zhang
et al.’s [2023] analysis of the PSQ operator, per-level time-stepping
with the prolonged IP in Equation 4 significantly improves the qual-
ity (including reduced locking) and stability of our coarse-level
preview simulations and so provides a meaningful “ground-floor”
foundation to explore previews for final, high-quality results in our
progressive framework. See Figure 2 and Section 5 for comparisons,
examples, and analysis. Equally important, as we will see in the
following sections, applying these prolonged, finest-level energies
in our time-stepping also serves a second critical role of promoting
consistency across our hierarchy as we progressively improve reso-
lution, by providing all levels with the same, highest-quality energy
evaluations for our material model.

4.3 Challenges to Progressive Refinement for Dynamics
We now have a simple method to compute a full, coarsest-level
preview of our animation end-to-end with prolonged IP time step-
ping via Equation 4. The next question, that we address here and in
the following sections, is how can we advance our preview steps
vertically to improving levels of resolution in our hierarchy?

2Replacing𝑥𝑡
𝑙
with𝑥𝑡

𝑙
in Equation 4 directly retrieves Zhang et al.’s quasi-static stepping

model.

Ji�ering
artifacts

PSQ Fine PSQ Coarse PSQ Fine PSQ Coarse

Frame 57 Frame 58

Initial setup

Fig. 6. PSQ Extended to Dynamics. A “horizontal-and-then-vertical” ap-
plication of PSQ solved for dynamics (momentum-balance rather than
equilibrium) gives consistent frames at each time-step across levels, but still
produces inconsistent dynamics (jitters and popping) in animations across
each level.

Coarse Preview PD Fine Level 
Vertical Upsampling
[Zhang et al. 2023]

Ti
m

e Lack of detailsRich details

Fig. 7. Of Coarse its a Fine Flag. (Left, blue) Starting with a pair of coarse-
mesh time-stepped flapping flag frames, applying just PSQ’s geometric
upsampling (Right, green) safely refines the mesh but does not enrich with
simulated details. In contrast, Progressive Dynamics (PD)’ (Middle, blue)
simulated enrichment refines both wrinkles and additional fine-scale wave
propagation.
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Given the effectiveness of time
stepping in-level with our pro-
longed IPmodel, a simple, compa-
rable method to solve our hierar-
chy suggests itself: as in standard
pre-vis methods, time-stepping
each level independently but now
with our prolonged IP applied to
obtain consistency. However, in
trying this horizontal approach, we see that while the animation
results for each individual simulated level improve over simple
direct simulation, with nice continuity of dynamics, they still signif-
icantly diverge from each other and therefore cannot be used for
Progressive Dynamics (see inset). Although disappointing, this is not
entirely surprising in this approach, as each time step at each level
will sample its fine-level energies from a different configuration, so
that the corresponding fine-level forces will vary significantly over
time. Again, as in direct simulation, this leads to wide divergence in
trajectories at each level.
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Frame 100
Rest shape

PD Coarse PD Fine
PSQ Converged Fine
[Zhang et al. 2023]

Frame 125

DivergingConsistent

Fig. 8. Poor PSQ Ducky. PSQ’s progressive enrichment can be applied to
each frame in an initial coarse time-stepped simulation like this inflated,
thrown ducky toy sequence (Left, blue coarse). However, as we see (yellow
meshes, Right) when PSQ is applied to each of these coarse preview time-
steps, PSQ’s equilibrium assumption immediately drives the crumpled duck,
in the new enriched frames to its rest shape (nearest equilibrium) creating
an immediate and unusable inconsistency in the duck’s animation. For
reference compare with the fine-level Progressive Dynamics (PD) solution
(Middle, blue fine).

Alternately, noting the undesirable trajectory divergence in our
above experiment, we could try to ensure consistent frames at each
time step, across levels, by applying Zhang et al.’s [2023] PSQ refine-
ment to vertically improve each coarse-level timestep individually,
with finer simulated details. PSQ progressively enriches the physical
details of an input coarse mesh while promoting frame consistency
across all levels, and so, on first glance, it seems well-suited for the
job. Indeed, as we see in Figure 6 and Section 5.2, applying PSQ
to each frame of our dynamically time-stepped coarse-level input
both enriches finer-resolution frames with physical detailing and
promotes vertical consistency with well-matching frames across
each time-step’s levels3, as it immediately breaks consistency with
the coarse-level preview and removes all dynamics after just the first
level of refinement. However, at each level the enriched simulated
details lose temporal coherence, leading to unacceptable inconsis-
tencies and discontinuities (e.g., jitters, popping and jumps) across
time steps in the finer-level geometric details that are generated.

In summary, purely horizontal time-stepping strategies produce
continuous trajectories across time, per level, but can not maintain
consistency across levels per time step—they are under-constrained.
On the other hand, purely vertical improvements of resolution per
time-step (even via prior progressive simulation methods) can some-
times produce consistency across resolutions per time step, but
generate discontinuities in dynamics across time per level—they are
over-constrained.

3Note that the original PSQ refinement operation enriches the geometry at each finer-
level with multiple simulated quasi-static steps to reach equilibrium. Here in Figure 6
we apply the natural modification of PSQ to dynamics by solving each new level’s PSQ
refinement with a single, converged dynamics solve. Directly applying the unmodified
PSQ operator, which solves each new level’s refinement by relaxing each refined frame
to a nearest equilibrium solution, gives even worse behavior, as we see in Figure 8

4.4 Progressive Advancement
Based on the above analysis we seek to balance continuity in time
with consistency per frame, across levels of resolution. To do so,
consider two levels of refinement, 𝑙 and 𝑙 + 1.

As analyzed above, repeated purely vertical refinement, (𝑡, 𝑙) ↦→
(𝑡, 𝑙 +1), gains us consistency across resolutions at the cost of tempo-
ral coherence. On the other hand, repeated horizontal time stepping,
(𝑡, 𝑙) ↦→ (𝑡 + 1, 𝑙), is a well-posed time integration and so clearly
obtains temporal coherence but produces distinctly different tra-
jectories for each level. These diverging trajectories are a direct
consequence of each level’s changing discretization computing the
solution to a different (albeit closely related) ODE [Courant et al.
1967]. Over time, these solutions diverge, with the thin-shell materi-
als and strong contact forces we treat here only exacerbating these
sensitivities and accelerating the divergence.

Considering these tradeoffs, we instead propose to keep bulk tra-
jectories aligned across levels by prolonging each level’s momentum
to the next. Specifically, we loosely couple interlevel dynamics by
applying each prior level’s explicit, finite-difference extrapolation of
position to define the inertial update for the time-step solves at the
next level. In practice, this process gives us an exceedingly simple
and effective algorithm for Progressive Dynamics.

We begin by first forward time-stepping our coarsest-level, 𝑙 =0,
prolonged IP (Equation 4) across our time span to compute our
preview. This generates our full preview state, 𝑥𝑡0, 𝑣

𝑡
0 for all 𝑡 ∈ [0, 𝑁 ]

and so populates the bottom row of our Progressive Dynamics
solution grid.
This coarse preview simulation can be efficiently repeated with

varying design parameters (e.g., changing geometries, boundary
conditions, materials) until trajectory results satisfy our goals. Once
a suitable preview run is completed, we then begin our progressive
LOD refinement.

For each new level 𝑙 +1 > 0, for all 𝑡 +1 ∈ [1, 𝑁 ], we first compute
momentum updates prolonged from our last level. Specializing to
implicit Euler, recall velocities are given, in-level, by the finite dif-
ference stencil 𝑣𝑡

𝑙
← (𝑥𝑡

𝑙
− 𝑥𝑡−1

𝑙
)/ℎ. Correspondingly, we construct

our prolonged momentum updates as

𝑥𝑡𝑙+1 = 𝑃𝑙𝑙+1 (𝑥𝑡𝑙 ) + ℎ
(
𝑉 𝑙
𝑙+1 (𝑥𝑡𝑙 )

)
𝑣𝑡𝑙

= 𝑃𝑙𝑙+1 (𝑥𝑡𝑙 ) +
(
𝑉 𝑙
𝑙+1 (𝑥𝑡𝑙 )

) (𝑥𝑡𝑙 − 𝑥𝑡−1
𝑙 ) .

(5)

Here 𝑃𝑙
𝑙+1 (𝑥) is the PSQ shell-prolongation operator [Zhang et al.

2023], as covered in Section 3, and 𝑉 𝑙
𝑙+1 (𝑥) = ∇𝑃𝑙𝑙+1 (𝑥) our corre-

sponding velocity prolongator.
We then compute each new level’s time-step advancement, at

grid points (𝑡 + 1, 𝑙 + 1), with our progressive IP solve

𝑥𝑡+1𝑙+1 = argmin
𝑥

1
2ℎ2 ∥𝑥 − 𝑥

𝑡
𝑙+1∥2𝑀𝑙+1 +𝐶𝑙+1 (𝑥) + Ψ𝐿

(
𝑃𝑙+1 (𝑥)) . (6)

We construct our progressive IP above with three key terms whose
sum is minimized. First, we have IPC barriers, 𝐶𝑙+1 (𝑥), defined on
the current level’s geometry. These barriers ensure strict feasibility
(nonintersection and strain-limit satisfaction) for each time step’s so-
lution so that at all levels our solutions are guaranteed intersection-
free. Second, we again (as in our preview solves) apply here our
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Fig. 9. Bouncy Cube. Progressive Dynamics (Left), in contrast to direct simulation (Right), resolves consistent dynamics across resolutions for impacts, even
between between widely varying, soft and stiff materials.

prolonged elasticity4 potential,Ψ𝐿
(
𝑃𝑙+1 (𝑥)) , which enriches our cur-

rent level’s solution by evaluating finest-level shell elasticity forces.
Finally, the time step solve’s inertial energy, 1

2ℎ2 ∥𝑥 − 𝑥𝑡𝑙+1∥2𝑀𝑙+1
, ad-

vances our solution at time step 𝑡 + 1 with a momentum update
lagged from the last level’s explicit extrapolation of position. This
ensures that neighboring time-step solutions on either side of each
time-step solve at the same level, (𝑡, 𝑙 + 1) and (𝑡 + 2, 𝑙 + 1), use the
same, temporally consistent extrapolation of motion from the com-
pleted finite differencing of the same time-step sequence generated
by the prior level 𝑙 ’s solution.

Each new level’s dynamics are thus driven by the momentum of
the preceding so that consistency is preserved. At the same, time
elasticity and contact generate enriched geometry in the new level
which then, in turn, generate new higher-resolution dynamics, via
momentum, for the following level.

4.5 Diagonal Refinement Perspective
Once a level 𝑙 ’s time-step solves are complete, we can proceed to the
hierarchy’s next level and repeat this process until we finalize our
finest-resolution, level-𝐿 solves. Starting with a full preview solution
at level 𝑙 = 0, Progressive Dynamics thus advances diagonally across
the space-time grid. Each time step updates from (𝑡, 𝑙) to (𝑡 +1, 𝑙 +1)
and so advances both mesh refinement and time simultaneously.
We observe that from this perspective, we are effectively just

solving each time step mesh-adapted [Manteaux et al. 2017] to the
next finer discretization of our domain. We simply first map all fields
needed for each next time solve from our 𝑙-level mesh to 𝑙 + 1, and
then solve the next time step with prolonged elasticity evaluations.
Starting from level 𝑙 = 0, we could thus advance diagonally from
any time 𝑡 until a boundary of our space-time grid is reached. Doing
so for all grid points then progressively fills our entire multilevel
solution in our grid, all the way up to our finest level 𝐿. In turn, this

4Note that for our finest-level IP solves there is, of course, no prolongation to fine-level
mesh applied inside elasticity energy evaluations, as 𝑃𝐿 = 𝑃𝐿

𝐿
= 𝐼𝑑 .

enables a great deal of flexibility in how time-step solves can be
computed for Progressive Dynamics simulations.

4.6 Solving Progressive Dynamics Time Steps
For minimization solves of each prolonged IP time step in Equation
(6), we employ Li et al.’s [2021] barrier-filtered Newton-type solver
for shells. Following Zhang et al. [2023], we hold the nonlinear offset
term (see Section 3), 𝑎𝑙

𝑙+1, constant in the gradient computations
of the PSQ shell-prolongation operator. Along with simplifying
optimization steps in minimizing our prolonged IPs, this means
that we apply velocity prolongation with the intrinsic map𝑈 𝑙−1

𝑙
≈

𝑉 𝑙−1
𝑙
(𝑥). For all preview time-step solves for levels below finest

resolution, we solve each time-step problem until the back-solved
decrement is below tolerance (Li et al.’s [2021] tolerance measure
at 10−3) or (rarely) until the decrement no longer provides descent.
For all finest-level solves, we terminate solely when convergence is
reached with Newton decrement below tolerance.

Progressive Dynamics’ diagonal structure removes the necessity
of sequential time-step computation that is generally required by
standard implicit time-integrationmethods. Each prolongedmomen-
tum update, 𝑥𝑡

𝑙
, can be computed from a grid point (𝑡, 𝑙)’s support,

(𝑡 − 1, 𝑙 − 1) and (𝑡 − 2, 𝑙 − 1), at the prior level, and so in principle,
each time-step solve can be computed independently in parallel from
all other time steps in the same level.
However, there are practical restrictions to this freedom. As

we are solving IPC-based time-step solves we require a feasible
(intersection-free, strain-limit-satisfying) initialization to begin each
Newton-type solve of the barrier-based IP’s in Equation (6). Like-
wise, more broadly, as in all implicit time-stepping methods for
nonlinear systems, this initializer should not be “too far” from the
solution. This latter criteria is of course fuzzy and is usually met
by simply initializing each time-step solve with the last time-step’s
solution. In turn, for IPC time-stepping this choice of initializer also
conveniently meets the requirement of providing a feasible starting
point for each solve as well. For Progressive Dynamics time-step
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Algorithm 1 Progressive Dynamics Algorithm
1: procedure ProgressiveDynamics(𝑥0

0 , . . . , 𝑥
0
𝐿
, 𝑣0

0 , . . . , 𝑣
0
𝐿
, 𝑁 )

2: 𝑙 ← 0 ⊲ Begin with coarsest-level solve
3: for each time step 𝑡 ∈ [1, 𝑁 ] do ⊲ Section 4.2
4: 𝑥𝑡

𝑙
← 𝑥𝑡

𝑙
+ ℎ𝑣𝑡

𝑙

5: 𝑥𝑡+1
𝑙
← argmin𝑥 1

2ℎ2 ∥𝑥 − 𝑥𝑡𝑙 ∥2𝑀𝑙
+𝐶𝑙 (𝑥 ) + Ψ𝐿

(
𝑃𝑙 (𝑥 ) )

6: 𝑣𝑡+1
𝑙
← (𝑥𝑡+1

𝑙
− 𝑥𝑡

𝑙
)/ℎ

7: while 𝑙 < 𝐿 do ⊲ Section 4.3
8: for each time step 𝑡 ∈ [1, 𝑁 ] do ⊲ Section 4.5
9: 𝑥𝑡

𝑙+1 ← 𝑃𝑙
𝑙+1 (𝑥𝑡𝑙 ) + ℎ

(
𝑉 𝑙
𝑙+1 (𝑥𝑡𝑙 )

)
𝑣𝑡
𝑙

⊲ Section 4.4
10: solve
11: 𝑥𝑡+1

𝑙+1 ← argmin𝑥 1
2ℎ2 ∥𝑥 − 𝑥𝑡𝑙+1 ∥2𝑀𝑙+1 +𝐶𝑙+1 (𝑥 ) + Ψ𝐿

(
𝑃𝑙+1 (𝑥 ) )

12: warm starting with 𝑥𝑡
𝑙+1 or PSQ safe-upsampled 𝑥𝑡+1

𝑙
⊲ Section 4.6

13: 𝑣𝑡+1
𝑙+1 ← (𝑥𝑡+1𝑙+1 − 𝑥𝑡𝑙+1 )/ℎ

14: 𝑙 ← 𝑙 + 1 ⊲ Progress to next finer level

solves, we call this sequential approach (across a level) to initializa-
tion horizontal warm-starting. We also construct a complementary
feasible, nearby vertical warm start to initialize a next time-step
solve at a grid point (𝑡, 𝑙) using only state from the prior level. To do
so, we begin with the already computed solution for the time-step
𝑥𝑡
𝑙−1 at the prior resolution that is already in the support of our new
solve. We then create the new feasible initializer for our Newton
solve at (𝑡, 𝑙) by applying Zhang et al.’s [2023] safe upsampling al-
gorithm (Section 3.3) to map 𝑥𝑡

𝑙−1 to the current resolution 𝑙 while
preventing intersection and strain-limit violations.

Vertical

Horizontal

��+1�

���+1 ��+1�+1

With both our vertical and horizontal warm
starts defined, we can now solve time steps at
each level with any combination of horizontal
and vertical warm starting; see Algorithm 1.
The only requirement is that to solve a time
step at (𝑡, 𝑙), all prior time-step solves required
for its support (down and left in the space-time
grid, starting with our initial preview solve at (0, 0)) have been
previously computed. This opens the door to many potential paral-
lelization strategies. As one concrete practical example, a simulation
can be divided into multiple subsets of time per level with each sub-
set solved in parallel by warm starting vertically at the subset’s start
and horizontally across the subset’s remaining time steps. In the
extreme, after solving the coarsest preview level, we can solve levels
sequentially, with each time step for that level solved in parallel
using vertical warm-starts. Although this latter strategy is unlikely
to be practical, it is an extreme test of our vertical warm-starting.
In our supplemental video, we demonstrate both this latter extreme
version and the former time subdomain hybrid warm-start for the
highly dynamic Waving Flag animation in Figure 12. Aside from
these proof-of-concept examples, the remainder of the animations
we generate here are computed with the per-level horizontal warm-
starting. We leave additional investigation of these asynchronous
time-stepping opportunities to mix and match vertical and horizon-
tal warm-starting in Progressive Simulation to future work.

5 EVALUATION
We implement a common test-harness code for evaluating both our
Progressive Dynamics method and prior Progressive Quasistatic
and direct IPC simulations in C++, applying CHOLMOD for linear

Ti
m

e

Level 0 Level 1 Level 2

PD

Direct Simulation

Progressive Refinement

Fig. 10. Gaming Octocats. The landing position of octocat balloons fired at
one another depends sensitively on simulation conditions. Direct simulation
gives different answers at every resolution. Progressive Dynamics (PD)
simulates a winning throw from its coarse preview and repeats it at every
resolution.

Fig. 11. Octocats Detail. See Figure 10.

solves and Eigen for other linear algebra routines [Guennebaud et al.
2010]. We summarize example statistics and timings on an Ubuntu
Linux machine (Intel i7-10700K 3.80GHz, 32 GB RAM).

5.1 Benchmark Examples
We instrument a wide range of examples to evaluate and compare
Progressive Dynamics on stress-test animations with increasing
complexity. Please see our supplemental video for all animations.

Dynamic Drape. We start with a simple dynamic drape test (see
Figure 5), analogous to static-drapemodeling problems in quasistatic
progressive simulation [Zhang et al. 2022]. Here we apply Progres-
sive Dynamics to progressively animate the dynamics of a thin
(0.07mm thick) 1m square cloth dropped on a sharp-edged gear
obstacle. Across increasing resolutions per level of 5.8K , 23K, and
90K vertices respectively, the progressive animations consistently
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Fig. 12. Waving the Flag. Progressive Dynamics maintains temporally
coherent motion, and frame-consistency across refinement levels.

follow the same overall trajectory and final drape shape, while each
progressively finer simulation generates increasing physical details
in the wrinkles, fold-overs, and obstacle wrapping.

Bouncy Cube. Next, we test a collision between a heavy and very
stiff (effectively rigid,𝑌 =8.2×1010 Pa) cube-shaped shell with sharp
edges, dropped onto a soft “trampoline” formed from a 1m-square
pinned thin (0.07mm thick) rubber sheet simulated with four res-
olution levels (400, 15K, 58K, 228K vertices per level). As we see
in Figure 9 (bottom), numerical stiffening and membrane locking
are especially challenging to overcome when colliding materials
vary in stiffness and stretch significantly (as they do here) under
rapid impact—resulting in widely disparate sheet deformations and
cube trajectories for each direct simulation at each different resolu-
tion. In contrast, in Figure 9 (top) and Figure 19 (left), we confirm
both visually and numerically (tracking the cube’s trajectory) that
the progressive simulation forms consistent and comparable sheet
deformations and rebounding trajectories across resolutions; also,
finer-scale simulations better capture the sharp impact of the cube’s
edges on the cloth, and the fine wrinkling of the sheet under tension.

Waving the Cat Flag. To evaluate longer-term consistency under
persistent, highly dynamic motion, we set a 20s long flag-waving
animation test. Here we drive a cloth flag (0.4mm thick, strain-
limited to 10%) from the state of Catifornia with wind. Starting with
a coarse (585 vertices) lowest-resolution preview mesh, Progressive
Dynamics captures the flag’s overall rapidly changing flapping and
folding motion throughout the animation. As Progressive Dynamics
proceedswith its finer-resolution levels (2.2K, 8.6K, 34.1K vertices), it
progressively captures more of the fine-detailed waves propagating

Fig. 13. The Catifornia State Flag. See Figure 12.

across the flag alongwith sharper-detailed creasing, folding, and self-
contact. As we see in Figure 12, tight matches across resolutions are
preserved throughout all frames of the sequence, without drifting
as the simulation progresses through the entire animation. Please
also see our additional analysis of this match in Section 5.2 below.

Bouncing Jumble. Complexmultibody trajectories, especiallywith
sharp contacts and friction, are notorious for their extreme sensi-
tivity to small perturbations. Minor changes in state, much less
resolution, can lead to entirely different pile-ups and jumbles. Here
we extend our bouncing cube scene (with comparable levels of pro-
gressive resolution) to a challenging stress test by dropping a pile
of stiff, heavy and sharp shell shapes (same material as the orig-
inal cube) onto the bouncy trampoline. In Figure 14, left and 19,
right (also see our supplemental video), we confirm both visually
and numerically that despite undergoing large numbers of rapidly
changing and varied inter-body collisions, the progressive solution
maintains close matches throughout the animations across all levels.
We note, however, one interesting exception, where a single cube
mismatches across the levels for 5 successive frames (for 0.05s to-
tal) and then, even more interestingly, is corrected by Progressive
Dynamics to preserve consistency for its trajectory, along with the
rest of the simulated domain, for the remainder of the 10s long
animation. We analyze this interesting exception in detail below in
Section 5.2.

Ball Drop. As covered in Section 4.2 above, coarse-resolution di-
rect simulations of shells can suffer from severe membrane-locking
artifacts. These artifacts are significantly reduced by Progressive
Dynamics’s prolonged, coarse-level time-stepping, enabling high-
quality previews. As an extreme test of Progressive Dynamics’s
ability to mitigate locking at coarse resolutions, we fire a stiff in-
flated elastic ball at the ground, using a coarse 930-vertex mesh.
In Figure 2, we see that while the direct simulation immediately
suffers severe locking, crumpling against the ground, Progressive
Dynamics’s coarse-level preview on the same mesh compresses on
impact, dimples, and rebounds, with the buckled dimples succes-
sively popping back out.
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Time Time

Progressive Dynamics Direct Simulation

Level 0

Level 3
Numerous mismatchesClose alignment

Level 0

Level 3

Fig. 14. Bouncing Jumble. Sharp and complex multibody contacts, as in this shell drop on trampoline example, destroy consistency across levels for direct
simulation (Right), whereas Progressive Dynamics (Left) maintains consistency across its progressive resolutions.

Laundry Basket. We evaluate the ability of Progressive Dynamics
to capture detailed wrinkling and folding behavior by dropping a
thin (0.08mm thick) cotton sheet across the top of a smooth laundry
basket. At highest resolution, the sheet first puckers with fine wrin-
kles along the edge of the basket, flops off one side, and then slowly
slides and buckles with a cascade of detailed wrinkles into a folded
crumple at the bottom of the basket. As we see in Figures 15 and
16, Progressive Dynamics’ improving solutions across a 3-level hi-
erarchy (5.8K, 23K, and 90K vertices) each capture the same overall
shape and dynamics while progressively enriching the simulated
wrinkling geometries to capture the dynamics of the branching and
merging finer folds. In contrast, as we see in Figure16, direct simu-
lations diverge almost immediately from each other across levels of
resolution and exhibit locking artifacts at coarse resolution. In Figure
15, we also qualitatively compare side-by-side the detailed wrinkling
and folding evolution, at key phases of the aforementioned dynam-
ics, of the finest-level Progressive Dynamics animation and the
finest-resolution direct IPC simulation. Here we see, in examination,
that per phase (which both follow) each method obtains different
but visually comparable quality thin-cloth material behavior.

Spin Cycle. Progressive Dynamics’ ability to mitigate locking at
coarse resolution enables it to animate high-speed, tightly contact-
ing frictional dynamics. Here, we drop the same cotton sheet from
the Laundry Basket onto a high-friction (𝜇 = 0.5), scripted sphere
that then begins to spin at high speed. This rapidly twists the cloth
into a tightly wound, high-contact, layered spiral. After 4 seconds
of spinning, the sphere slows it rotational velocity by half, causing
the cloth to slowly unwind. After unwinding, the cloth wobbles
as it begins to slowly stick-slip across and eventually fly off the
sphere. In Figure 17, we see that even at a coarse preview level with
a 5.8K vertex mesh, Progressive Dynamics is able to capture the
entire range of behavior for this animation; progressive updates (at
23K and 90K vertices, respectively) then enrich the wrinkling and
contact details while consistently maintaining shape and the same
frictional stick-to-slip behavior across resolutions, so that the time

of transition where the cloth flies off, as the spinning slows, remains
the same across levels.

5.2 Comparisons and Analysis
Direct Methods Comparisons. For each of our above benchmark

examples, we have run corresponding direct simulations using the
same base IPC simulation code in our test code at each mesh reso-
lution level. Please see our figures throughout this paper (Figures
4, 10, 14, 16 and 9) and our supplemental video, demonstrating the
large and rapid divergence of both shape and trajectory across reso-
lutions of these direct simulations. We observe that both IPC and
Vellum produce completely different animations, with widely dif-
ferent material behaviors and trajectories, per resolution. Likewise,
see Figures 2, 16, 9 and supplemental videos for demonstrations
of the above-discussed locking artifacts for direct simulation pre-
views on coarse-level meshes. We also note that these issues are not
restricted to just high-fidelity FE-based methods. In Figure 4, we
evaluate Houdini Vellum’s [SideFX 2024] XPBD-based simulation
side-by-side with direct IPC simulation on the Toy Toss (see below)
design task. In contrast, we invite careful frame-by-frame exami-
nation in our Figures’ 1, 4, 8, 5, 22, 10, 12, 14, 16, 17, 9 videos and
accompanying supplemental data of per-frame mesh geometries
demonstrating qualitative consistency with simulated refinement
across resolutions.

Progressive Quasistatic Simulation Comparison. As covered in Sec-
tion 2, the recently developed Progressive Shell Quasistatics (PSQ)
[Zhang et al. 2023] method is the most closely related competing
method to Progressive Dynamics—offering unconstrained vertical
enrichment, across levels of increasing mesh resolution, via shell
simulation on an initial coarse frame input. In Figure 8, we apply
PSQ’s full simulation-based vertical refinement algorithm, to im-
prove each coarsest-level dynamic time step of an inflated shell
ducky-toy thrown at a wall without gravity. Applying coarsest-
level Progressive Dynamics (top row), the toy flies at the wall and
crumples against it.

ACM Trans. Graph., Vol. 43, No. 4, Article 104. Publication date: July 2024.



Progressive Dynamics for Cloth and Shell Animation • 104:13

Direct Simulation Fine LevelPD Fine Level

Time

Fig. 15. Laundry Basket. Dropping a high-resolution cotton sheet in a
basket gives qualitatively comparable, but different high quality results, for
frames of a finest-resolution direct simulation (PD) (Right) and Progressive
Dynamics (Left) animation. However, as we see next in Figure 16, that
Progressive Dynamics maintains consistent animation across resolutions
while direct simulation diverges and suffers from locking artifacts at lower
resolutions.

Examining PSQ’s generated refinement on just one simple frame
of the duck, at maximum compression in impact, is already sufficient
to demonstrate PSQ’s inability to progressively simulate dynamics.
Recall that, PSQ’s vertical enrichment applies multiple simulated
quasi-static steps to reach equilibrium at each level’s refinement
to generate new simulated details. As such, for the duck’s flight, it
immediately during the very first level of enrichment removes all
crumpling from the impacting duck, returning back to rest shape
(the nearest equilibrium) creating an immediate and unusable in-
consistency in the duck’s refined trajectory.

The thrown duck demonstrates that the equilibrium assumption
of the PSQ method prevents its application to dynamics. However,
it is also tempting to consider applying only PSQ’s contact-safe

Ti
m

e

Level 0 Level 1 Level 2

Consistent Refinement

PD

Direct Simulation

Fig. 16. Laundry Basket Comparison. See discussion in Figure 15.

Time

Level 0

Level 1

Level 2

Spin

Fly o�

Fig. 17. Spin Cycle. Progressive Dynamics captures the same high-speed,
tight-winding contact, and complex frictional stick-slip dynamics across
all levels of refinement—please see our video for detailed playback of this
animation.

vertical upsampling algorithm [Zhang et al. 2023], to similarly re-
fine each coarse-level time step. Recall that this method upsamples
geometry to a closest interpenetration-free geometry, without static-
simulated enrichment, and so would not suffer the same temporal
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Fig. 18. Kinetic Energy vs Resolution. We plot the kinetic energy, per
time step, of each resolution in the Progressive Dynamics hierarchy across
a range of varying examples. Here, with the exception of a small span of
frames in the Bouncy Jumble benchmark (please see our evaluation section
for a detailed analysis of this span), we see close first-order consistency in
the overlaid kinetic energies.

discontinuity issues as in the full PSQ pipeline. In Figure 7 we apply
PSQ upsampling to the Waving Cat Flag sequence. Examining the
finest-resolution results, we see that upsampling, not surprisingly,
gives almost identical geometries (with minor variations responding
to contact resolution) to the initial coarse-resolution time steps we
begin with. For PSQ upsampling, we observe that simulated enrich-
ment is key to useful enrichment, while for PSQ’s full algorithm,
we see that statically simulated, vertical enrichment is likewise not
a solution for dynamics.

Consistency, Evaluating Trajectory Difference. Accompanying our
qualitative comparisons, in Figure 9 we plot the overlaid trajec-
tory of the center of mass of the cube shell across resolutions in
the Bouncy Cube. In Figure 19, we correspondingly plot trajectory
errors for both Bouncy Cube and Bouncing Jumble examples by
plotting summed 2-norm differences of all centers of mass, between
resolutions, per time step. Across both example trajectories, we see
the rapid deviation of direct methods and the long-term consistency
of Progressive Dynamics.

Consistency and Limitations in Physical Behavior. While the pre-
vious analysis demonstrates the coherence of our simulation trajec-
tories, a natural question is whether high-order consistency of the
physical behavior is preserved by Progressive Dynamics animations.
In Figure 18, across a range of different animation behaviors (Bouncy
Cube, Dynamic Drape, Bouncy Jumble and Waving Flag), we plot
the kinetic energy per time step of each level in the Progressive Dy-
namics hierarchy. Here, with the exception of the aforementioned
small span of frames in the Bouncy Jumble benchmark, we again
see close first-order consistency in the overlaid trajectory’s kinetic
energies.
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Fig. 19. Center of Mass Deviation. Analyzing the trajectory errors for
both the Bouncy Cube (Left) and Bouncing Jumble (Right) examples, we plot
the summed, 2-norm differences of all centers of mass, between resolutions,
per time step. Across both example trajectories, we see the rapid deviation
of direct simulation methods and the long-term consistency of Progressive
Dynamics across levels.

Next, if we zoom in to the divergence of kinetic energies for
the Bouncy Jumble, we observe that it is centered around a peak
difference at frame 91. As we see in see in the inset figure, when
we make a detailed examination of the frame geometries around
this peak we find that, starting at frame 89 in the animation,

Frame 91 Frame 94

Level 0

Level 3

Diverged Recovered

Level 0

Level 3

one lonely cube in the animation
and the corresponding deforma-
tion of the trampoline around it,
begins to diverge by a small but
significant amount from the po-
sitions predicted for it by coarser
levels. We then observe that, at
frame 91, corresponding to the
peak difference in the kinetic en-
ergy plot, we see a maximum dif-
ference in the cube’s configuration per level. When we closely exam-
ine other regions of the frames, we do not see differences elsewhere
in the geometries. Even more interesting, we then observe that
by frame 94 (0.05s later from the initial divergence), Progressive
Dynamics appears to repair itself so that trajectories for both the
offending cube and all other shells in the simulation remain match-
ing across resolutions. This behavior is then reflected as well with
the small kinetic energy differences in the remainder of the 10s
simulation’s plots.

Timing. Here we report timing results for Progressive Dynamics.
There are two key takeaways. First, by construction, each step of
simulation in a finest-level Progressive Dynamics simulation has
identical (no overhead) runtime costs per iteration as its correspond-
ing finest-level direct simulation. However, there is one caveat, as
discussed earlier in Section 4.6 that subsets of Progressive Dynamics
time steps allow for parallel computation of time steps per level with
vertical warm-starting, while direct simulation requires a purely
sequential processing. Second, Progressive Dynamics preview sim-
ulations are significantly faster than direct, fine-level preview sim-
ulations that would previously have been required to create their
results. Concretely, across the Laundry Basket, Smushing Octocats,
Bouncing Jumble and Waving Cat Flag examples, we see a 21x, 30x,
52x, and 75x speed-up for Progressive Dynamics preview simulation
steps over the direct, fine-level preview steps that would previously
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have been required to create these results, respectively. We have
also observed that, compared to a direct simulation of the same res-
olution, our coarse-level preview simulation incurs approximately
a 2x overhead—primarily due to the necessity of gradient sampling
and restriction from the finest level. Finally, we observe, as expected
that the cost of computing each intermediary level goes up propor-
tionally with its resolution (slower compared to coarse preview and
still significantly faster than fine) with increased costs (e.g., 3.7x
for Bouncing Jumble as mesh resolution goes up by 4x). Speedups
then vary significantly depending on example, finest target mesh
resolution, number of preview levels employed, and the complexity
of scene dynamics, with substantial possible increased performance.

5.3 Changing Time Step and Levels
We focus on generating animations with practical, frame-rate size
time steps with ℎ ranging in 0.04s to 0.01s. We also apply modest
numbers of intermediate levels, generally one or two, in between the
coarsest and finest meshes in our hierarchies. We find that this bal-
ances sufficient intermediate previewing and solution improvement
against the increased cost (see above) of computing final animations
as the number of in-between levels grows. With these settings we
are able to generate all examples evaluated in the previous sections,
as well as in the design tasks we cover below in Section 5.4. At
the same time it remains an interesting question to consider how
Progressive Dynamics behaves as we further decrease timestep size
and increase numbers of intermediate levels.

Varying Time Step Sizes. Decreasing time step sizes further for
Progressive Dynamics enables the generation of animations that cap-
ture higher-frequency dynamics and reduces the numerical damping
inherited from the underlying implicit Euler time integrator we em-
ploy in our model. Applying smaller time steps likewise incurs
the obvious cost of more computation (more time-step solves) re-
quired for the same span of animation time—just as in direct time
stepping. In Figure 21 we explore this behavior by dropping a thin
(0.07mm thick) 1m square cloth on a bunny obstacle animated with
Progressive Dynamics stepped at ℎ = 0.025s and 0.0025s respec-
tively. Considering each animation’s behavior at three key points
in their trajectory: during initial impact, sliding across the ground,
and finally at rest, we see different respective behaviors consistent
with a more and less damped system. Faster collisions at smaller
timesteps propagate finer and more chaotic wrinkles during colli-
sion, and fine-detailed curved wrinkles opposing the sliding along
the ground. In contrast, increased damping of dynamics at larger
time steps produces regular wrinkling during initial impact that
evolves into finer branches along the ground during the slower slid-
ing. At rest, both animations exhibit similar draping behavior with,
of course, different final configurations and some material variation.
For each frame, we also include the corresponding coarsest preview
demonstrating consistent previewing generated across these widely
varying timestep sizes.

Discussion of Time Step. More broadly, beyond this example, we
can consider the expected behavior of the Progressive Dynamics
model as the time step becomes small. Each diagonal step (𝑡, 𝑙) ↦→
(𝑡 + 1, 𝑙 + 1) will, of course, apply less (compare Figure 21 left and

right) change per level of advancement as the time step decreases.
Correspondingly, adding more intermediate levels, and so more
vertical resolution (see Figure 20 and our analysis below) can balance
for decreasing timestep sizes with increasing amounts of diagonal
steps of enrichment.

Number of Levels. As discussed above, additional intermediate
levels in the Progressive Dynamics hierarchy incur more cost to
produce final, finest-level animations. In Figure 20, we compare
frames of the coarsest and finest levels, using the above bunny drop
example, generated by Progressive Dynamics using hierarchies with
increasing numbers of intermediate levels (the same first and last
level meshes). In the coarsest-level results (top row), we see that
Progressive Dynamics preview results are the same (by construction)
irrespective of the number of intermediate levels we employ. The
finest-level animations produced (bottom row) then of course differ
depending on the number of intermediate levels. We observe here a
gradual but clear improvement in the amount of fine-scale details
generated by Progressive Dynamics as we increase the number of
intermediate levels applied in the hierarchy. At the same time, we
note that the bulk geometry of each fine-level result remains close
to the coarsest-level preview.

Discussion of Levels. Better understanding the tradeoffs for im-
proving details via higher-resolution final meshes vs increasing the
numbers of levels in the hierarchy remains important future work
to explore. Currently we so far find that, at the extreme, aggressive
two-level hierarchies (see Figure 20 left) without any intermediate
levels are generally insufficient for diagonal resolution and pre-
viewing, while a modest number of intermediate levels (one or two)
combined with an appropriately high-quality final mesh of sufficient
resolution offer practical mid-process previewing (see our below
design examples) and a good starting point to balance cost against
generated dynamic detail. At the same time, as covered above in our
analysis of time resolution, smaller time-step applications may also
require finer vertical resolution and so the use of more intermediate
levels in our hierarchy. For such applications, this also warrants
additional future exploration and analysis. Finally, we can observe
that, in the limit, as we increase the numbers of intermediate lev-
els, we decrease the DOF change per level, and so the amount of
enrichment possible for each level’s solve. Empirically, as in Figure
20 bottom, we correspondingly observe the consistency maintained
between the bulk shape and coarse geometric previews in increasing
vertical resolution solutions, but this requires further analysis for
better understanding.

5.4 Animation Design with Progressive Dynamics
We use coarse-level Progressive Dynamics simulations to design
multiple detailed physics-based animations.

Toy Toss: This aforementioned design example was shown earlier
in Figures 3 and 4 and demonstrates the coarse-level design benefits
of Progressive Dynamics. Please see the video for a detailed anima-
tion design exposition for this example, with comparisons between
Progressive Dynamics, Direct IPC, and Houdini Vellum solvers.
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Coarse level (7K mesh)

Fine level (100K mesh)
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t = 0.15s t = 0.24s t = 0.15s t = 0.24s t = 0.15s t = 0.24s t = 0.15s t = 0.24sCollider

Fig. 20. How Many Levels? Left to right we compare coarsest and finest-level frames generated by Progressive Dynamics as we vary the numbers of
intermediate levels in the hierarchy. Coarsest-level previews (Top row) remain the same (by construction) irrespective of how many intermediate levels are
applied. Finest-level animations produced (Bottom row) differ depending on the number of levels, with the bulk geometries of each fine-level remaining close
to the coarsest-level preview, and a gradual improvement in the amount of fine-scale details generated by Progressive Dynamics as we increase the number of
intermediate levels.

dt = 0.025 dt = 0.0025

Level 0 Level 2 Level 0 Level 2

t = 0.225s

t = 0.325s

At rest

Collider

Fig. 21. Changing Time Step. Dropping a thin square cloth on a bunny
obstacle animated with Progressive Dynamics stepped at ℎ = 0.025s and
0.0025s respectively, we see different respective behaviors consistent with a
more and less damped system at three key points in their trajectory: during
initial impact, sliding across the ground, and finally at rest.

Smushing Octocats: We throw two inflated octocat objects at each
other and use fast coarse-level design to ensure that the red and
blue octocats hit in an interesting way and also land in colored
holes. In contrast, traditional direct IPC simulation fails to achieve
cross-resolution consistency. See Figures 10 and 11.

Sky Dancers: We designed a group of air-blown sky dancer (aka
“inflatable tall boy”) models with detailed and fun cloth dynam-
ics (see Figure 1). Given their chaotic and unpredictable motion,
coarse-level previews were essential to obtaining desirable anima-
tion results before running expensive fine-scale simulations. The

Final
render

Time

Level 0

Level 2

Level 0

Level 2

Heavier material

W
in

d

Fig. 22. Let’s Dance. Artists can apply Progressive Dynamics for an end-
to-end workflow, beginning by rapidly exploring and composing complex
animations like this inflatable sky dancer with dynamics driven by the
interplay of wind forces, inflation, elasticity, and frictional contact.

line of sky dancers are simulated using an upward wind force, al-
lowing for interactions involving contact and friction. Artists can
effectively utilize our coarse preview to rapidly experiment with
various designs, including initial conditions, materials, and layouts,
by swiftly generating multiple samples. After finalizing the design,
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the standout sequence undergoes refinement through our progres-
sive dynamics framework. This process elevates the sequence into
a polished, high-quality animation, ready for screen display and
distinguished by its intricate dynamic wrinkling behaviors.

6 CONCLUSION
We have presented Progressive Dynamics, a coarse-to-fine, level-
of-detail, physics-based animation method and design pipeline. We
demonstrate that it enables rapid coarse-resolution previews of fric-
tionally contacting thin-shell and cloth dynamics with progressive
improvement to much higher-resolution animations of complex
dynamics with quality and realism comparable to high-fidelity shell
simulation output.
There are many interesting directions and opportunities for fu-

ture work in regard to the questions and limitations discussed above.
Foremost, coarse-level design is powerful; however, there remain
limitations in the application of potentially too-coarse preview
meshes due to kinematic locking that can constrain our simula-
tion results. Adaptive remeshing could thus be interesting future
work. Future research should also consider generalization of Pro-
gressive Simulation from cloth and shells to additional physical
models, such as volumetric and higher co-dimension models.
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