
Progressive Dynamics++: A Framework for Stable, Continuous, and
Consistent Animation Across Resolution and Time

JIAYI ERIS ZHANG, Adobe, USA and Stanford University, USA
DOUG L. JAMES, Stanford University, USA
DANNY M. KAUFMAN, Adobe, USA

Fig. 1. Designing a five-hat-trick animation with Progressive Dynamics: Tossing a floppy hat onto a coat rack is hard, but adjusting initial conditions to
successfully throw five hats is nearly impossible when using slow-to-compute, direct, fine-level simulations, due to tricky dynamics, sensitive collisions, and
frictional contact. However, using our new Progressive Dynamics++ framework we can quickly explore a large number of coarse preview simulations (Left) to
rapidly find a sample that makes the toss work. Once we find this rare, needle-in-a-haystack scenario, with our coarse simulation (Level 0), where all the
hats magically fit and delicately settle on the hooks and one another, Progressive Dynamics++ then progressively (Levels 1-3) synthesizes production-level
animations with millions of fine-scale vertices, capturing intricate physical details and, most importantly, maintaining consistent five-hat-trick outcomes.

The recently developed Progressive Dynamics framework [Zhang et al. 2024]
addresses the long-standing challenge in enabling rapid iterative design for
high-fidelity cloth and shell animation. In this work, we identify fundamen-
tal limitations of the original method in terms of stability and temporal
continuity. For robust progressive dynamics simulation we seek methods
that provide: (1) stability across all levels of detail (LOD) and timesteps, (2)
temporally continuous animations without jumps or jittering, and (3) user-
controlled balancing between geometric consistency and enrichment at each
timestep, thereby making it a practical previewing tool with high-quality
results at the finest level to be used as the final output.

Authors’ addresses: Jiayi Eris Zhang, Adobe, USA, Stanford University, USA, eriszhan@
stanford.edu; Doug L. James, Stanford University, USA, djames@cs.stanford.edu; Danny
M. Kaufman, Adobe, USA, dannykaufman@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2025/8-ART53 $15.00
https://doi.org/10.1145/3731202

We propose a general framework, Progressive Dynamics++, for construct-
ing a family of progressive dynamics integration methods that advance
physical simulation states forward in both time and spatial resolution, which
includes Zhang et al. [2024]’s method as one member. We analyze necessary
stability conditions for Progressive Dynamics integrators and introduce a
novel, stable method that significantly improves temporal continuity, sup-
ported by a new quantitativemeasure. Additionally, we present a quantitative
analysis of the trade-off between geometric consistency and enrichment,
along with strategies for balancing between these aspects in transitions
across resolution and time.

CCS Concepts: • Computing methodologies → Physical simula-
tion.

Additional Key Words and Phrases: Progressive Simulation, LOD Ani-
mation, Time Integration, Cloth and Shells

ACM Reference Format:
Jiayi Eris Zhang, Doug L. James, and Danny M. Kaufman. 2025. Progressive
Dynamics++: A Framework for Stable, Continuous, and Consistent Ani-
mation Across Resolution and Time. ACM Trans. Graph. 44, 4, Article 53
(August 2025), 20 pages. https://doi.org/10.1145/3731202

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

https://doi.org/10.1145/3731202
https://doi.org/10.1145/3731202

53:2 • Jiayi Eris Zhang, Doug L. James, and Danny M. Kaufman

Fig. 2. Hat Trick Challenges for Direct Simulation: (Left) Reversing
ballistic motion gives rough estimates of initial conditions for these hats’
approximate motions and impact times. (Middle) Using direct simulation,
fast coarse-scale deformable time stepping allows further fine-tuning of
initial conditions and material properties to achieve the five-hat-trick design
goal. Unfortunately, direct simulation methods break the consistency with
mesh refinement. (Right) This generates incorrect final, fine-mesh animation
results that no longer satisfy design goals, with hats sliding off hooks.

1 INTRODUCTION
The recently developed Progressive Dynamics framework [Zhang
et al. 2023, 2022, 2024] addresses the long-standing challenge in
enabling rapid iterative design for high-fidelity cloth and shell an-
imation. In this work, we identify fundamental limitations of the
original method in terms of stability and temporal continuity. For
framerate animations (e.g., 24 FPS), Zhang et al. [2024] apply small
numbers of levels (e.g., 2–4), which are generally sufficient for Pro-
gressive Dynamics. However, as animators seek to capture smaller
timestep, higher speed animations, the number of levels in the LOD
necessarily must correspondingly increase (for sufficient “vertical”
resolution) to obtain comparable enrichment from coarse to fine.
Unfortunately, in exactly such cases, with larger numbers of levels,
we observe that Zhang et al.’s Progressive Dynamics method can
become unstable, with jittering artifacts and instabilities.
In this work, we advocate for a robust

Progressive Dynamics framework that en-
ables users to progressively design anima-
tions by exploring variations in design pa-
rameters without restriction. Once a target
coarse-level animation design is identified, it
should be progressively refined with tempo-
ral continuity, ensuring that, at any timestep,
results across all levels remain stable and
physically realistic, and with geometric con-
sistency, so that as animations progress, they
only differ in enrichment details. Ultimately,
the finest-level output animation, and ideally
all prior preview animations at intermediary
levels, should all give temporally continuous,
artifact-free, and increasingly high-fidelity
animations as output. To this end, we define the following desirable
properties (see Figure 3):

Fig. 3. Illustration of Stability, Continuity, Consistency, and Enrich-
ment: Using a waving flag example, we visualize how a well-designed
Progressive Dynamics integrator behaves across both resolution and time.
Vertically (within each column, from bottom to top), the flag shape is pro-
gressively enriched with high-frequency detail while preserving geometric
consistency—i.e., the coarse-level shape approximates the bulk deformation
of finer levels without drift or divergence. Horizontally (across each row,
from left to right), the animation evolves smoothly over time without jumps,
jittering, or nonphysical artifacts. Throughout the space-time grid, all states
remain stable—free from jitters or explosions—highlighting robust integra-
tion across all levels of detail (LOD) and time steps.

Stability ensures simulations remain numerically stable not only
over time, as in standard time integration, but also across resolution
levels. This stability criterion must hold across all timesteps and all
levels of detail (LOD).
Temporal Continuity requires physically continuous anima-

tions over time, at each level, free from jumps, jittering, or nonphysi-
cal abrupt changes, thereby ensuring natural and realistic transitions
between frames.

Geometric consistency requires that each coarser-level timestep
captures the bulk deformation of the corresponding finer-level
timestep, with finer levels contributing only high-frequency details
(see below) that do not alter coarse-scale behavior.

Enrichment is the progressive enhancement of simulations through
the addition of increasingly fine-scale geometric and dynamic details
at higher resolution levels.

Controllability is the ability to provide users with explicit con-
trol over the trade-off between geometric consistency and enrich-
ment—two inherently connected but often competing objectives—during
level-of-detail transitions across both resolution and time.

Toward these goals, we introduce Progressive Dynamics++ (PD++),
a general framework for constructing Progressive Dynamics integra-
tors that step through both time and spatial resolutions. Although
effective in many cases, the original Progressive Dynamics integra-
tionmethod proposed by Zhang et al. [2024]—referred to throughout

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

Progressive Dynamics++: A Framework for Stable, Continuous, and Consistent Animation Across Resolution and Time • 53:3

Fig. 4. Hat Detail Enrichment: Progressive Dynamics++ progressively synthesizes production-quality animations with millions of fine-scale vertices,
capturing intricate detail and consistently achieving the same five-hat-trick variation across all levels. Built on our Progressive Dynamics++ framework, our
VelPro method delivers stable, continuous, artifact-free animation results that show increasingly detailed collisions and deformations, refining from coarse to
fine levels. In contrast, the semi-diagonal method from Zhang et. al. [2024] generates jittering and instability artifacts in this delicate example.

this paper as the semi-diagonal integrator (named after its inte-
gration path)—does not fully satisfy these properties. Specifically,
we identify critical limitations in the stability and temporal conti-
nuity of this resolution-integration method. Likewise, additional
improvements in enrichment and consistency are desirable. As we
shall see, the method proposed by Zhang et al. [2024] represents
a specific instance within a much broader family of possible PD++
constructions. This opens the door to significantly improved Pro-
gressive Dynamics animation generation. Concretely, our work here
constructs and demonstrates two new specific Progressive Dynam-
ics integration methods in this family: the full-diagonal method
(named after its integration path) and the velocity-prolongation
method (abbreviated as VelPro integrator), with the latter, as we
will see, especially effective and emphasized as a primary focus
in this work; see Section 4 for details. Throughout, we color-code
animation results for clarity: ■ direct simulation generated, and ■
semi-diagonal , ■ full-diagonal , and ■ VelPro integration for
progressive dynamics.
In this work, we first qualitatively demonstrate that Zhang et

al.’s [2024] method becomes unstable with increasing levels, exhibit-
ing jittering artifacts and instabilities. To quantitatively evaluate
the above properties in the PD++ framework, we introduce two
new metrics: one to measure temporal continuity within each level
and another to assess geometric consistency across resolution levels
at each time step. Together, these metrics enable comprehensive
benchmarking of both the Progressive Dynamics methods evaluated
in this paper and future developments in Progressive Simulation.
With these metrics in hand, we also investigate how the balance
between consistency and enrichment can additionally be further
controlled with the application of a soft quadratic regularization
term.

Summary of Technical Contributions.We propose a general frame-
work, Progressive Dynamics++, for constructing a family of progres-
sive dynamics integration methods that advance physical simulation
states forward in both time and spatial resolution, which includes
Zhang et al. [2024]’s method as one member. We analyze the sta-
bility conditions necessary for Progressive Dynamics integrators
and introduce a novel and stable VelPro method that significantly
improves temporal continuity, supported by a new quantitative mea-
sure. Additionally, we present a quantitative analysis of the trade-off
between geometric consistency and enrichment, along with strate-
gies for balancing these aspects in level-of-detail transitions across
resolution and time. In addition to theoretical analysis, we conduct
extensive numerical evaluations and comparisons across diverse
examples to support our claims and demonstrate the properties of
each method.

2 RELATED WORK
Since our Progressive Dynamics++ framework builds upon and im-
proves the original Progressive Dynamics, as in Zhang et al. [2024],
we refer readers to the comprehensive list of related work provided
there. Here, we focus on the most relevant aspects of our Progressive
Dynamics++ integration framework.

2.1 Progressive Simulation
The recent progressive simulation framework proposed by Zhang
et al. [2023; 2022; 2024] addresses the long-standing challenge of
enabling rapid iterative design for high-fidelity cloth and shell simu-
lation. This framework facilitates a workflow that supports effective
modeling and animation design cycles by generating coarse preview
simulations that are predictive of, and closely match, subsequent
refinements at finer resolutions. Specifically, Zhang et al. [2023;
2022] focused on quasistatic simulations that enable interactive ex-
ploration of design parameters by generating coarse previews of

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

53:4 • Jiayi Eris Zhang, Doug L. James, and Danny M. Kaufman

Fig. 5. Exploding Flag: Here we demonstrate instability in the semi-diagonal integration method [Zhang et al. 2024] with a wind-driven waving flag,
generated with a ten-level hierarchy. We show computed frames 166 to 168, across resolutions from coarsest level (0) to the finest level (9). While levels 0–6
appear visually stable, significant and obvious instabilities emerge at level 7 and progressively worsen, resulting in severe jittering, nonphysical deformation,
and distorted flag shapes by level 9.

Fig. 6. Stable Flags: In the same waving-flag setup as Figure 5 above, we
evaluate long-term consistency under sustained, highly dynamic motion.
Here, our newly proposed full-diagonal and VelPro integrators both remain
stable and produce visually artifact-free results throughout the 20-second
animation.

cloth (via a coarse-to-fine hierarchy) and shell (via a fine-to-coarse
hierarchy) equilibrium states for static modeling. These previews
form a sequence of increasingly refined solutions that converge to
an accurate high-fidelity C-IPC simulation of the final cloth drape
or shell configuration.

Zhang et al. [2024] extend the progressive framework to dynamic
cloth and shell animations, via the rapid generation of coarse an-
imations that progressively and predicatively refine toward high-
fidelity results at the finest level. However, Progressive Dynamics
(PD) in both this prior work and here focus on coarse-to-fine, level-
of-detail (LOD) generation of increasingly plausible cloth and shell
animations. Unlike quasistatic progressive simulation, PD does not
produce cloth and shell dynamics that converge to a single, accu-
rate finest-level simulation. Therefore, no ground-truth fine-level
solution exists for direct frame-by-frame visual comparison with
PD results.
Our work builds on and generalizes the Progressive Dynamics

framework introduced by Zhang et al. [2024]. We propose a gen-
eral framework for constructing progressive dynamics integrators,
investigate key properties including stability, temporal continuity,
geometric consistency, enrichment, and the controllability of their
trade-offs, and introduce two specific instances that substantially

improve stability and temporal continuity, supported by a new com-
prehensive theoretical analysis and new quantitative evidence.

2.2 Stability of Time Integrators in Graphics
Numerical time integration methods, particularly implicit integra-
tors [Baraff and Witkin 1998; Bridson et al. 2002; Li et al. 2020, 2018;
Narain et al. 2012; Otaduy et al. 2009; Tang et al. 2018], are funda-
mental in physics-based animation and simulation. Time integrators
discretize steps in time to forward solve differential equations that
govern evolving physical system dynamics. Explicit methods like
Forward Euler and Verlet integration prioritize efficiency, but strug-
gle with stability at large timesteps and with stiff systems. On the
other hand, implicit methods such as backward Euler and BDF2
can provide robust timesteps with stability, albeit at the expense of
computational overhead and numerical damping. Stability in these
methods classically refers to bounding numerical error during time
integration, ensuring stable dynamics over time, and robust numer-
ical solutions, particularly in response to large timesteps or stiff
systems.
Building on Progressive Dynamics’ resolution-time integration,

our work extends the analysis of stability from the classic temporal
domain to jointly consider stability across both temporal and reso-
lution dimensions. In addition to standard time integrators, where
stability addresses the accumulation of integration error over time,
our analysis focuses on stability as we traverse both resolution
levels (or “vertical stability”) and timesteps1, examining how dif-
ferences between coarse and fine solutions propagate and grow.
To our knowledge, this is the first attempt to analyze stability in
the progressive simulation framework, where the interaction be-
tween resolution and time introduces unique challenges in stability
analysis that differ fundamentally from single-resolution problems.

1In this paper, we follow the convention from Zhang et al. [2024] that a “horizontal”
direction represents time and “vertical” direction represents resolution.

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

Progressive Dynamics++: A Framework for Stable, Continuous, and Consistent Animation Across Resolution and Time • 53:5

Fig. 7. Stability with a Limited Number of Levels: For large-timestep
(e.g., 0.04s), lower frequency animations, Zhang et al. [2024] typically use
a limited hierarchy of 2–4 levels, which is generally sufficient. We confirm
that all three methods—semi-diagonal [Zhang et al. 2024], full-diagonal and
VelPro integration methods—produce stable and visually plausible results
in this regime.

2.3 Temporal Continuity
Ensuring temporal continuity between frames is a critical aspect in
fields like optical flow estimation and video super-resolution. Opti-
cal flowmethods such as PWC-Net [Sun et al. 2018] and RAFT [Teed
and Deng 2020] utilize hierarchical, coarse-to-fine frameworks with
iterative refinement and feature warping to maintain smooth and
temporally coherent motion fields across consecutive frames. Simi-
larly, video super-resolution techniques such as VSRNet [Kappeler
et al. 2016] and EDVR [Wang et al. 2019] emphasize temporal align-
ment through motion compensation and attention mechanisms,
ensuring that details are consistently preserved without introducing
temporal artifacts. Recent methods [Xue et al. 2019] also integrate
optical flow and super-resolution into a unified framework to im-
prove temporal continuity. These approaches collectively highlight
the importance of designing systems that preserve temporal con-
tinuity across frames. Although these approaches align with our
goal of maintaining temporal continuity in multilevel simulations
over time, the concept of temporal continuity in physics simulation
extends far beyond the smoothness and coherence of the estimated
motion field, as seen in contexts like optical flow. Although optical
flow primarily focuses on the perception of motion between con-
secutive frames, physics simulations involve the accurate evolution
of dynamic properties such as momentum, energy, and interaction
forces over time. Temporal continuity in this context requires adher-
ence to the governing physical laws, such as Newtonian mechanics
and conservation principles, ensuring that animations evolve con-
sistently without introducing significant artificial discontinuities or
artifacts, and yet accounting for physically accurate jumps, e.g., due
to impacts.

2.4 Consistency and Enrichment
Ensuring consistency while enriching animations is a critical chal-
lenge in physics-based simulation. Tracking-based enrichmentmeth-
ods, like TRACKS [Bergou et al. 2007] and Wrinkle Meshes [Müller
and Chentanez 2010], use constraints to track coarse input anima-
tions and add fine details such as wrinkles. However, these methods
often struggle to maintain consistency, as tracking constraints do
not guarantee that coarse deformations are preserved in the fine-
scale result [Bai et al. 2016], and coarse-level artifacts can propagate
to finer scales, producing non-physical wrinkles [Chen et al. 2023].
Complementary enrichment approaches, such as Complementary
Dynamics [Zhang et al. 2020], address some of these challenges by
constraining enrichment to orthogonal subspaces, ensuring that
added details respect the animator’s intent. While effective, they
face challenges in defining suitable orthogonal bases for shell dy-
namics and can fail to resolve interactions and self-contacts [Chen
et al. 2021a]. Data-driven approaches, while promising, frequently
encounter issues with artifacts and limited applicability beyond their
training domains, which can compromise consistency and temporal
coherence [Kim et al. 2013; Lahner et al. 2018]. These limitations
highlight the need for methods that can maintain physical and
temporal consistency while enriching with physical and geometric
details. Given the high computational cost of direct fine-resolution
cloth simulations, neural networks have become a popular direc-
tion for achieving high-resolution final simulation results by adding
details to coarse simulations [Chen et al. 2021b; Halimi et al. 2023;
Kavan et al. 2011; Lee et al. 2019; Oh et al. 2018]. For example, Yu
and Wang [2024] integrate simulation and correction modules to
generate high-resolution animations while maintaining spatial con-
sistency and temporal coherence between frames. Similarly, Zhang
and Li [2024] employ a lightweight learning-based approach to en-
hance high-frequency details in coarse garment simulations, which
provides an efficient balance between computational cost and dy-
namic fidelity.

2.5 Parallel-in-Time Multigrid Methods
Parallel-in-Time (PinT) methods [Gander and Lunet 2024] are effec-
tive tools to accelerate time-dependent simulations by leveraging
parallelism across temporal dimensions. Lions et al. [2001] introduce
the concept of iterative coarse-to-fine corrections in time, demon-
strating significant parallel speedups for moderate problem sizes.
Extending this work, Multigrid Time Reduction in Time (MGRIT)
[Friedhoff et al. 2013] formalizes a robust multilevel framework, of-
fering improved scalability for large-scale simulations. While PinT
multigrid methods incorporate the time dimension, aligning con-
ceptually with our goal of addressing dynamic problems using a
multiresolution hierarchy, they focus on accelerating convergence
to a solution at the finest time resolution, similar to generic multires-
olution frameworks for linear and nonlinear systems. In contrast,
our work focuses on progressive simulation, where coarse-to-fine,
level-of-detail solutions progressively refined in space, across levels
of resolution, are designed to facilitate faster iterative design and
exploration. Finally and importantly, unlike PinT methods, the Pro-
gressive Dynamics problem we address here also does not impose

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

53:6 • Jiayi Eris Zhang, Doug L. James, and Danny M. Kaufman

Fig. 8. Instabilitywith Increasing Levels: Jumps and jittering issues in the
semi-diagonal and full-diagonal integration methods emerge as the number
of levels increases. Using an eight-level hierarchy (in contrast with four as
in Figure 7), the semi-diagonal integration method shows severe instability,
with significant jumps (e.g., frame 40), while the full-diagonal integration
method exhibits subtle jitters due to its lack of continuity guarantees. In
contrast, our proposed VelPro integration method ensures smooth and
continuous simulations across all levels.

the constraint that trajectories must strictly match a converged nu-
merical time-integration model at the finest level, which enables
additional design freedoms.

3 BACKGROUND: PROGRESSIVE SIMULATION
Before introducing the Progressive Dynamics++ framework and ana-
lyzing the properties of the Zhang et al.’s [2024] original Progressive
Dynamics method, we first introduce here necessary background
and constructions for progressive simulation [Zhang et al. 2023, 2022,
2024]. We start with hierarchy construction and then cover direct,
per-level time integration, the extension to progressive quasistatic
simulation [Zhang et al. 2023, 2022], and finally detail progressive
simulation’s most recent extension to Progressive Dynamics [Zhang
et al. 2024].

3.1 Multiresolution Time Integration
To progress from direct time integration to progressive simula-
tion, we construct a multi-resolution mesh hierarchy consisting
of triangle meshes with increasingly finer resolutions. We apply
the decimation-based LOD construction method from Zhang et al.
[2023], starting with high-quality, finest-level triangulations, and
applying quadric error edge collapse [Garland and Heckbert 1997]
with probabilistic quadrics [Trettner and Kobbelt 2020] for decima-
tion. We refer to Zhang et al. [2023, 2022] for a detailed analysis
of the impact of alternative LOD constructions on simulation qual-
ity. At each level of the hierarchy, we solve a specially constructed
timestepping problem by independently minimizing a proxy energy
(see next section) at each level using implicit integration methods.
We indexmeshes in the hierarchy by resolution level, with subscripts

𝑙 ∈ {0, 1, . . . , 𝐿}. For level 𝑙 , the undeformed (rest) and deformed
positions of the mesh vertices are 𝑥𝑙 , 𝑥𝑙 ∈ R3𝑛𝑙 , respectively, where
𝑛𝑙 is the number of vertices at that level 𝑙 .

For frictionally contacting cloth and shells subject to imposed
boundary conditions and external forces, we model each simulation
mesh2 with potential energies for shell elasticity (Ψ), contact barriers
(𝐵), friction (𝐷), and, when necessary, strain limiting (𝑆). These
potentials contribute to the total potential energy at level 𝑙 , given by
𝐸𝑙 = Ψ𝑙 + 𝐵𝑙 +𝐷𝑙 + 𝑆𝑙 . Direct per-level timestep solves with implicit
Euler method then minimize the incremental potential (IP) energy

𝑥𝑡+1𝑙 = argmin
𝑥

1
2ℎ2 | |𝑥 − 𝑥

𝑡
𝑙 | |2𝑀𝑙

+ 𝐸𝑙 (𝑥), (1)

where ℎ is timestep size, 𝑀𝑙 is the level-𝑙 ’s mass matrix, and 𝐸𝑙 is
the total potential energy, including contributions from body and
external forces. We use the notation | |𝑥 | |𝑀 = 𝑥⊤𝑀𝑥/2 throughout.

3.2 Proxy Energies and Prolongations
Next, we detail here the construction of the proxy energies applied to
step progressive simulations. Instead of solving each level’s standard
IP problem independently, as in the direct per-level time-stepping
in Equation 1 above, progressive simulation methods first intro-
duce (see Zhang et al. [2023; 2022]) prolongation operators 𝑃𝑙

𝑙+1 (·).
These operators map nodal positions and surface quantities from
current levels 𝑙 , to next levels, 𝑙 + 1, and are precomputed during
mesh hierarchy construction. At each coarsened level 𝑙 < 𝐿, the
progressive simulation framework computes successively refined
approximations of the final equilibrium geometry by minimizing a
proxy for the finest-level potential energy:

𝐹𝑙 (𝑥𝑙) = 𝐵𝑙 (𝑥𝑙) + 𝐷𝑙 (𝑥𝑙) + 𝑆𝑙 (𝑥𝑙)︸ ︷︷ ︸
𝐶𝑙 (𝑥𝑙)

+Ψ𝐿
(
𝑃𝑙 (𝑥𝑙)

)
. (2)

Unlike the direct simulation’s total potential, 𝐸𝑙 , defined above, the
progressive simulation proxy potential, 𝐹𝑙 , allows coarsened levels
to directly evaluate shell elastics at the finest resolution, Ψ𝐿 , by
direct prolongation, 𝑃𝑙 (𝑥𝑙), from current level 𝑙 , to the finest mesh,
while efficiently enforcing contact and strain limit constraints on the
coarse geometry through barriers-based terms𝐶𝑙 (𝑥𝑙). This mitigates
membrane-locking artifacts that direct solves would generate at
coarser levels, and promotes consistent simulation behaviors across
resolutions. For quasistatics, a progressive solver (detailed further
below in Section 3.3) minimizes this proxy energy to equilibrium
at each level. Solution’s at each level are then safely initialized and
advanced to the next finer level [Zhang et al. 2023, 2022]. This
process is repeated until convergence at the finest level gives the
final simulation result.

3.3 ProgressiveQuasistatics and Dynamics
In analogy to Equation 1 above, progressive simulation methods
step, for all levels 𝑙 + 1 ∈ {0, . . . , 𝐿}, by minimizing a modified IP

2Following Zhang et al. [2024], we apply Neo-Hookean membrane [Vouga 2024] and
discrete-hinge bending [Grinspun et al. 2003; Tamstorf 2013] for shell elastics, and
C-IPC [Li et al. 2021] barriers for contact, friction and strain limiting.

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

Progressive Dynamics++: A Framework for Stable, Continuous, and Consistent Animation Across Resolution and Time • 53:7

using the proxy potential

𝑥𝑡+1𝑙+1 = argmin
𝑥

1
2ℎ2 ∥𝑥 − 𝑥

𝑡
𝑙+1∥2𝑀𝑙+1 +𝐶𝑙+1 (𝑥) + Ψ𝐿

(
𝑃𝑙+1 (𝑥)) . (3)

Recall that for the finest-resolution level, 𝐿, the prolongation, 𝑃𝐿 , is
just the identity. Then, solely at the finest level, the above IP solve
is identical to Equation 1.

For Progressive Quasistatic simulation, Zhang et al. [2023, 2022]
repeatedly step the abovemodifed IP in Equation 3, at each level with
𝑥𝑡
𝑙+1 = 𝑥𝑡

𝑙+1. Initializing each level 𝑙 + 1’s solves with the last level
𝑙 ’s prolonged solution, this artificial timestepping process continues
at each level until the system reaches equilibrium.
To then extend progressive simulation to animating dynamics,

Progressive Dynamics [Zhang et al. 2024] considers progressive
refinement across spatial resolution (as in Zhang et al. [2023; 2022])
and forward dynamics over time. The full progressive simulation
state is now defined on a space-time multiresolution grid, with
spatially discretized positions 𝑥𝑡

𝑙
, and velocities 𝑣𝑡

𝑙
defined at each

grid point (𝑡, 𝑙), corresponding to the timestep 𝑡 ∈ {0, 1, . . . , 𝑁 } and
the resolution level 𝑙 ∈ {0, 1, . . . , 𝐿}.

For all coarsened levels 𝑙 + 1 < 𝐿, Progressive Dynamics timestep-
ping is then likewise solved with Equation 3. Here a key contribution
of Zhang et al. [2024] is the construction of the 𝑥𝑡

𝑙
term to balance

temporal continuity with frame-wise geometric consistency. At the
coarsest level, (𝑙 +1 = 0), Zhang et al.’s [2024] semi-diagonal method
performs forward timestepping by solving the prolonged IP problem
(Equation 3) with the velocity update 𝑥𝑡0 = 𝑥𝑡0 + ℎ𝑣𝑡0. This generates
all preview states 𝑥𝑡0, 𝑣

𝑡
0, for all 𝑡 ∈ {0, 1, . . . , 𝑁 } and so populates the

bottom row of our Progressive Dynamics solution grid. Then, for
finer levels, 𝑙 + 1 > 0, the semi-diagonal method computes velocity
updates prolonged from the previous level for all 𝑡+1 ∈ {1, 2, . . . , 𝑁 }.
Specifically (following implicit Euler) velocities are defined at each
prior level as 𝑣𝑡

𝑙
← (𝑥𝑡

𝑙
− 𝑥𝑡−1

𝑙
)/ℎ. The prolonged velocity updates

are then constructed as:

𝑥𝑡𝑙+1 = 𝑃𝑙𝑙+1 (𝑥𝑡𝑙) + ℎ
(
𝑉 𝑙
𝑙+1 (𝑥𝑡𝑙)

)
𝑣𝑡𝑙

= 𝑃𝑙𝑙+1 (𝑥𝑡𝑙) +
(
𝑉 𝑙
𝑙+1 (𝑥𝑡𝑙)

) (𝑥𝑡𝑙 − 𝑥𝑡−1
𝑙).

(4)

where 𝑃𝑙
𝑙+1 and 𝑉 𝑙

𝑙+1 =∇𝑃𝑙𝑙+1 are the PSQ shell-prolongation oper-
ators [Zhang et al. 2023] for positions and velocities respectively.
Progressive Dynamics then computes the timestep advancement
for each new level at grid points (𝑡 + 1, 𝑙 + 1) using the progressive
IP solve in Equation 3.

4 PROGRESSIVE DYNAMICS++ FRAMEWORK
We now generalize Zhang et al.’s [2024] Progressive Dynamics
method with a broadened framework, Progressive Dynamics++,
for constructing a range of progressive simulation integrators that
step through both time and spatial resolutions. To do so we fo-
cus on a family of progressive advancement integrations in the
resolution-time grid, by exploring variations in the construction of
the prolonged term 𝑥𝑡

𝑙+1, in Equation 3. Recall that Zhang et al.’s
[2024] semi-diagonal method constructs this term with a velocity
update using jointly prolonged prior positions and prior velocities
from the previous level (see Equation 4). Of course this is just one
potential choice. Progressive Dynamics++ instead considers the

range of Progressive Dynamics integrators parameterized by

𝑥𝑡𝑙+1 = 𝑥𝑡𝑙+1 + ℎ𝑣𝑡𝑙+1, (5)

where 𝑥𝑡
𝑙+1 and 𝑣𝑡

𝑙+1 are opened to all choices for approximations
of the converged positions and velocities (𝑥𝑡

𝑙+1, 𝑣
𝑡
𝑙+1) at each time 𝑡 ,

and level 𝑙 + 1, in the resolution-time grid. While broader families
of Progressive Dynamics integrators are certainly possible (and of
interest for future investigation), as we will see below, this simple
generalization enables the careful analysis of Progressive Dynamics
properties across existing methods, and the construction of new,
improved Progressive Dynamics integration methods.
Concretely, as we vary how 𝑥𝑡

𝑙+1 and 𝑣𝑡
𝑙+1 are constructed by

choices of prolongations and prior states available in the Progressive
Dynamics resolution-time grid we can retrieve prior integration
methods and design new alternatives.
In terms of retrieving prior methods, the semi-diagonal method

is easily built as a specific instance within this family by choosing
𝑥𝑡
𝑙+1 = 𝑃𝑙

𝑙+1 (𝑥𝑡𝑙) and 𝑣𝑡𝑙+1 =
(
𝑉 𝑙
𝑙+1 (𝑥𝑡𝑙)

) (𝑥𝑡
𝑙
−𝑥𝑡−1

𝑙
)/ℎ. Likewise, as an

even simpler case, direct per-level simulation (at each level 𝑙 + 1)
just takes exact values of 𝑥𝑡

𝑙+1 = 𝑥𝑡
𝑙+1 and 𝑣𝑡

𝑙+1 = 𝑣𝑡
𝑙+1

3.
In terms of designing new, improved methods, as we will ana-

lyze in the following sections, it is important to note that stability,
vertical geometric consistency, and temporal continuity all heavily
depend on careful construction of 𝑥𝑡

𝑙+1. In turn, this requires appro-
priately incorporating lagged “prior“ states from coarser levels and
prior timesteps. As a preview, we apply the Progressive Dynamics++
framework to construct a new, stable Progressive Dynamics method,
the VelPro integrator4, which significantly improves temporal con-
tinuity and comes with unconditional stability guarantees in the
linear setting. The update for VelPro is constructed with

𝑥𝑡𝑙+1 = 𝑥𝑡𝑙+1 + 𝑃𝑙𝑙+1 (𝑥𝑡𝑙 − 𝑥𝑡−1
𝑙) .

See Section 5.4.2 for further details.
For additional analysis and exercise of Progressive Dynamics++

framework, we also construct the full-diagonal integration method
using the update

𝑥𝑡𝑙+1 = 𝑃𝑙𝑙+1 (2𝑥𝑡𝑙 − 𝑃𝑙−1
𝑙 𝑥𝑡−1

𝑙−1),
for 𝑙 ∈ {1, 2, . . . , 𝐿}, and 𝑥𝑡1 = 𝑃0

1 (2𝑥𝑡0 − 𝑥𝑡−1
0) . For comparison,

while the full-diagonal method is stable, as we will see below, it can
generate animations that break temporal continuity. See Section
5.4.1 for further details.

Finally to equip the Progressive Dynamics++ framework with bet-
ter mechanisms for analyzing targeted properties and their tradeoffs
across Progressive Dynamics integrators we additionally propose
two newmetrics to quantitatively evaluate their temporal continuity
(see Section 6) and geometric consistency (see Section 7).

5 STABILITY
We begin by analyzing the occurrence of instabilities in Zhang et
al.’s [2024] semi-diagonal method, and next systematically develop a
theory to explain their underlying causes. Throughout, we base our

3Of course this construction quickly leads to divergence solutions across levels.
4As this update prolongs only the prior level’s velocity, 𝑣𝑡

𝑙
= (𝑥𝑡

𝑙
− 𝑥𝑡−1

𝑙
)/ℎ, while

using position, 𝑥𝑡
𝑙+1 , from the current level, we call it the VelPro integrator.

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

53:8 • Jiayi Eris Zhang, Doug L. James, and Danny M. Kaufman

analysis on the implicit Euler integration model employed. Across
a wide range of examples, we observe similar behavior as reported
in Section 5.3 of Zhang et al. [2024] for changing level numbers.
Specifically, for large-timestep (e.g., 0.04s), lower frequency ani-
mations, small numbers of levels (e.g., 2-4) are generally sufficient
for Progressive Dynamics. Although Zhang et al. [2024]’s method
then performs well in this regime (e.g., see Figure 7), capturing
higher-speed, small-timestep animations demands more LOD levels
to maintain sufficient vertical resolution and enrichment. In these
cases, we observe that Zhang et al.’s [2024] method can generate
severe jittering and explosion artifacts, with instability worsening
as the number of levels increase (see Figures 5, 8, 11, and 12). These
examples highlight a critical stability issue with Zhang et al.’s [2024]
method when many levels are used. We note that, empirically, the
threshold at which these instabilities and artifacts emerge is highly
condition-dependent, making it difficult to predetermine when an-
imations are going to exhibit instabilities and so give unusable
results.

5.1 Test Model Problem (2D Mass-Spring System)

g
Vibrating

We begin by applying Zhang et al.’s [2024] semi-
diagonal method to a simple 2D example con-
sisting of a mass-spring chain, with both ends
pinned under gravity, to clearly illustrate its
observed instability behaviors (see inset). With a few levels (less
than ten in this case), the semi-diagonal method performs as ex-
pected, consistent with the results reported in Zhang et al. [2024].
However, further increasing the total number of levels results in
explosion artifacts similar to those observed in 3D examples. In
Figure 9 we see that once instability artifacts appear, characterized
here by distorted deformation shapes, they propagate diagonally
across both timesteps and levels. Here we also note that the scale of
this growing distortion roughly doubles over time (see red arrows
in Figure 9).

5.2 Source of Instability

�̂��+1

�����−1�

We next analyze the source of the above in-
stabilities in the semi-diagonal method. For
the coarsest-level simulation, we follow Sec-
tion 3.3 to generate a full-sequence preview
animation, {𝑥0

0 , 𝑥
1
0 , 𝑥

2
0 , ..., 𝑥

𝑁
0 }, using prolonged

IP timestepping. For progressive refinement
to finer levels, we first consider a simplified
setup for the prolonged diagonal momentum update at grid points
(𝑡 + 1, 𝑙 + 1), defined as

𝑥𝑡𝑙+1 = 𝑃𝑙𝑙+1 (𝑥𝑡𝑙) + ℎ(𝑉 𝑙
𝑙+1 (𝑥𝑡𝑙))𝑣𝑡𝑙

= 𝑃𝑙𝑙+1 (2𝑥𝑡𝑙 − 𝑥𝑡−1
𝑙) .

(6)

Here, notice that we simplify by treating 𝑃𝑙
𝑙+1 as a linear opera-

tor, using only its intrinsic component [Zhang et al. 2023], so that
𝑉 𝑙
𝑙+1 (𝑥) = ∇𝑃𝑙𝑙+1 (𝑥) = 𝑃𝑙

𝑙+1 (𝑥). In the above, we also continue to use
the finite-difference stencil for implicit Euler velocity updates, with
𝑣𝑡
𝑙
= (𝑥𝑡

𝑙
− 𝑥𝑡−1

𝑙
)/ℎ. The progressive IP timestep solve then follows

Equation 3.

Time

Le
ve
l

*Instability

Di
ag
on
al

pr
op
ag
ati
on

11
12

13
14

Fig. 9. The semi-diagonal Method’s Instability in a 2D Mass-Spring
Example: A simple 2D mass-spring example reveals that, for the semi-
diagonal method, as the number of levels increases, instability artifacts start
to appear in the form of exaggerated deformations that propagate diagonally
across both timesteps and resolution levels. The red arrows highlight how
the scale of these shapes grows roughly twofold over time.

The aforementioned explosion artifacts in Zhang et al. [2024] arise
from the accumulation and propagation of discrepancies between
levels during time integration. Specifically, these discrepancies grow
exponentially over successive timesteps. To characterize this, we
define the discrepancy at level 𝑙 as

𝛿𝑙 = 𝑃𝑙−1
𝑙 𝑥𝑡𝑙−1 − 𝑥𝑡𝑙 .

After𝑛 timesteps at level 𝑙+𝑛, this discrepancy propagates from level
𝑙 as 𝛿𝑙+𝑛 ≈ 2𝑛𝑃𝑙

𝑙+𝑛𝛿𝑙 , thus amplifying exponentially. We also recall
from Zhang et al. [2023] that each linear term of the prolongation,
𝑃𝑙
𝑙 ′ , 𝑙 < 𝑙 ′, has non-negative entries with row sums equal to one.
Here, we focus our stability proofs on the linear setting and then
empirically demonstrate (across all examples, including extreme
cases of 16 levels and large time steps of 0.04s) in our validation
that these results hold in the general nonlinear case with nonlinear
prolongation operators and force contributions.

5.3 Theoretical Results: Exponential Growth of 𝛿𝑙
Above we built intuition for the source of instability in Zhang et
al.’s [2024] progressive advancement. We now formally present our
main results on the exponential growth of the level discrepancy 𝛿𝑙
in this linear setting. Detailed proofs are provided in Appendix A.

Theorem 1. Assume that each 𝑃𝑙
𝑙+1 has full rank. For multi-level

diagonal timestepping, if 𝑥𝑡
𝑙
= 𝑃𝑙−1

𝑙
(2𝑥𝑡−1

𝑙−1 −𝑥𝑡−2
𝑙−1) with boundary val-

ues 𝑥𝑡0, 𝑥
0
𝑙
, 𝑣0
𝑙
,∀𝑡, 𝑙 , then 𝑥𝑡

𝑙
= 𝑃𝑙−𝑛

𝑙
((𝑛+1)𝑥𝑡−𝑛

𝑙−𝑛 −𝑛𝑥𝑡−𝑛−1
𝑙−𝑛) ∀𝑡, 𝑙, 𝑛

if and only if 𝑥𝑡
𝑙+1 = 𝑃𝑙

𝑙+1𝑥
𝑡
𝑙
∀𝑡, 𝑙 .5

5Throughout this work, “∀𝑡, 𝑙” always means for all 𝑡 ∈ {0, 1, . . . , 𝑁 } and 𝑙 ∈
{0, 1, . . . , 𝐿}. Positive integers 𝐿, 𝑁 are considered fixed. In this statement, “∀𝑛” means
for all positive integers 𝑛 such that the vector 𝑥 is always well defined.

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

Progressive Dynamics++: A Framework for Stable, Continuous, and Consistent Animation Across Resolution and Time • 53:9

The diagonal stepping regime, 𝑥𝑡
𝑙
= 𝑃𝑙−1

𝑙
(2𝑥𝑡−1

𝑙−1 − 𝑥𝑡−2
𝑙−1), and

boundary values uniquely determine all values 𝑥𝑡
𝑙
on the resolution-

time grid. Theorem 1 states that solutions across different levels are
direct prolongations of one another (from coarse to fine) and are thus
absolutely consistent if and only if, for any level 𝑙 , the simulation
is performed using standard single-level timestepping and all finer-
level solutions can be obtained by directly prolonging results from
that level. Please see Appendix A for a detailed discussion.

Theorem 2. Assume that multi-level diagonal timestepping is ap-
plied with 𝑥𝑡

𝑙
= 𝑃𝑙−1

𝑙
(2𝑥𝑡−1

𝑙−1 − 𝑥𝑡−2
𝑙−1), with given boundary conditions

𝑥𝑡0, 𝑥
0
𝑙
, 𝑣0

𝑙
, ∀𝑡, 𝑙 and 𝑡0, 𝑙0 with 𝑡0 > 0 such that:

• 𝑥𝑡
𝑙+1 = 𝑃𝑙

𝑙+1𝑥
𝑡
𝑙
for 𝑡 ∈ {𝑡0 − 1, 𝑡0} and any 𝑙 , except when (𝑡, 𝑙) =

(𝑡0, 𝑙0);
• 𝑥𝑡0

𝑙0+1 + 𝛿𝑙0+1 = 𝑃𝑙0
𝑙0+1𝑥

𝑡0
𝑙0

with 𝛿𝑙0+1 ≠ 0.
Then for any 𝑛 ≥ 1 such that the vectors are well-defined,

𝑥𝑡0+𝑛
𝑙0+𝑛 = 𝑃𝑙0

𝑙0+𝑛 ((𝑛 + 1)𝑥𝑡0
𝑙0
− 𝑛𝑥𝑡0−1

𝑙0
) + (2𝑛 − 𝑛 − 1)𝑃𝑙0+1

𝑙0+𝑛𝛿𝑙0+1 .

Theorem 2 shows that any violation of the condition𝑥𝑡
𝑙+1 = 𝑃𝑙

𝑙+1𝑥
𝑡
𝑙

for any 𝑡 and 𝑙 leads to an asymptotically exponential growth of
error, unless the prolongation operators do not have full rank. In
practice, the prolongation operators used for Progressive Simulation
[Zhang et al. 2023, 2022, 2024] have full rank.

5.4 Sufficient Conditions for Ensuring Stability
Building on Theorems 1 and 2, we see that stable time integration
in this setting of Progressive Dynamics requires either (i) the can-
cellation of 𝛿𝑙 when constructing the time integration stencil, or
(ii) ensuring that the coefficient in front of the source term, 𝛿𝑙 , is
less than or equal to 1, thus avoiding exponential growth. These
conditions open the door to a family of integrators that meet these
requirements while adding consistency by leveraging lagged posi-
tion and velocity information from previous timesteps and levels.
We briefly previewed two examples of such methods in Section 4.
Together with the integrator proposed in Zhang et al. [2024], all
three are specific instances of the general Progressive Dynamics++
model for constructing Progressive Dynamics integrators proposed
in Equation 5. Recall that, based on their stencil constructions, we
call them the semi-diagonal [Zhang et al. 2024], full-diagonal
and VelPro integration methods.

�̂��+1

���

��−1�−1

5.4.1 Full-Diagonal Integration Method. Build-
ing on the above analysis of instabilities, we
aim to develop improved Progressive Dynam-
ics time integration methods to address stabil-
ity. Since the discrepancy 𝛿𝑙 is inherent in pro-
gressive refinement and grows exponentially,
propagating diagonally as 𝛿𝑙+𝑛 ≈ 2𝑛𝑃𝑙

𝑙+𝑛𝛿𝑙 , a
straightforward approach is to eliminate it by adding a correction
term during time integration. Following this idea, we recall that 𝛿𝑙
originates from 𝑥𝑡−1

𝑙
+ 𝛿𝑙 = 𝑃𝑙−1

𝑙
𝑥𝑡−1
𝑙−1 . Thus, eliminating 𝛿𝑙 requires

modifying the multi-scale timestepping stencil. Accordingly, instead
of Zhang et al.’s [2024] original update of 𝑥𝑡

𝑙+1 = 𝑃𝑙
𝑙+1 (2𝑥𝑡𝑙 − 𝑥𝑡−1

𝑙
),

we first consider a new Progressive Dynamics integration in the

framework using the update, for 𝑙 ∈ {1, 2, . . . , 𝐿},

𝑥𝑡𝑙+1 = 𝑃𝑙𝑙+1

(
𝑥𝑡𝑙 + ℎ

(𝑥𝑡
𝑙
− 𝑥𝑡−1

𝑙
− 𝛿𝑙)

ℎ

)
= 𝑃𝑙𝑙+1

(
𝑥𝑡𝑙 + ℎ

(𝑥𝑡
𝑙
− 𝑃𝑙−1

𝑙
𝑥𝑡−1
𝑙−1)

ℎ

)
= 𝑃𝑙𝑙+1 (2𝑥𝑡𝑙 − 𝑃𝑙−1

𝑙 𝑥𝑡−1
𝑙−1), ∀𝑡,

(7)

and
𝑥𝑡1 = 𝑃0

1 (2𝑥𝑡0 − 𝑥𝑡−1
0), ∀𝑡 . (8)

In Appendix B, we provide detailed stability analysis for this con-
struction. More precisely, we show that, modulo non-linearity, a
perturbation 𝛿0 applied to a single boundary value results in a per-
turbation on 𝑥𝑡

𝑙
of magnitude at most√𝑛𝐿 (min{𝑡, 𝑙}+1) | |𝛿0 | |, where

we recall that 𝑛𝐿 is the number of vertices at the finest level 𝐿. Note
that if 𝑛𝐿 is fixed, the amplification of the perturbation 𝛿0 grows at
most linearly in 𝑙 , in contrast to Zhang et al. [2024]’s semi-diagonal
time integration, where the growth is exponential in 𝑙 .

�̂��+1

�����−1�

���+1
5.4.2 VelPro Integration Method. On the other
hand, since the primary source of instability
is the expansive coefficient 2 in front of 𝑥𝑡

𝑙
,

we can construct an alternative method that
replaces the coefficient 2 with 1. Analysis for
error follows similarly and likewise prevents
exponential growth. Concretely, we propose to
define the prolonged diagonal update at grid points (𝑡 + 1, 𝑙 + 1) as

𝑥𝑡𝑙+1 = 𝑥𝑡𝑙+1 + ℎ 𝑃𝑙𝑙+1𝑣𝑡𝑙

= 𝑥𝑡𝑙+1 + ℎ 𝑃𝑙𝑙+1
(𝑥𝑡

𝑙
− 𝑥𝑡−1

𝑙
)

ℎ

= 𝑥𝑡𝑙+1 + 𝑃𝑙𝑙+1 (𝑥𝑡𝑙 − 𝑥𝑡−1
𝑙) .

(9)

Detailed stability analysis for this integrator is provided in Appen-
dix C, where we show that modulo non-linearity, a perturbation 𝛿0
applied to a boundary value results in a change on 𝑥𝑡

𝑙
of magnitude

at most √𝑛𝐿 (min{𝑡, 𝑙}+1) | |𝛿0 | |, which is at most linear in 𝑙 for fixed
𝑛𝐿 .

6 CONTINUITY
Above we have analyzed the stability properties of our proposed
full-diagonal and VelPro time integration methods. However, an-
other critical property for animation remains unaddressed: temporal
continuity. We define temporal continuity as animations that pro-
duce continuous, uninterrupted animations over time, free from
non-physical jumps or jittering, thereby enabling high-quality tran-
sitions between frames.
It is critical to jointly consider both stability and continuity in

Progressive Dynamics integration. Our definition of stability for
Progressive Dynamics integration as in Section 5 is analogous to
standard forward (“horizontal”) time integration. Progressive Dy-
namics integration is stable when a Progressive Dynamics integra-
tor’s iterated sequence of timestep solves (advancing in both time
and resolution) remain bounded (and so do not diverge). However,
as we cover below, and in contrast to horizontal time integration, a
stable Progressive Dynamics integration can still exhibit jittering

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

53:10 • Jiayi Eris Zhang, Doug L. James, and Danny M. Kaufman

artifacts due to broken continuity. This is because, as in the fully
diagonal method, stable yet independent Progressive Dynamics in-
tegration paths can arrive at adjacent timestep frames, at the same
level, with disagreement. When sequenced horizontally, the result-
ing animations then exhibit jitters exactly where the integrations
disagree. This again highlights the importance of satisfying both
stability and continuity in Progressive Dynamics integration.

6.1 Continuity Properties of Progressive Integrators

}

h Vertical

Full-
Diagonal

Here, we examine the continuity prop-
erties of the three Progressive Dynam-
ics integrators covered so far. Stabil-
ity is a predicate for continuity. As the
number of levels increases, we have
seen that the semi-diagonal integrator
can become unstable, generating artifacts ranging fromminor jitters
to severe explosions and breaking the temporal continuity. In the
case of the full-diagonal integrator, discontinuities can still arise,
without instability, as covered above, from abrupt jumps between
frames adjacent in time in-level, but along different diagonal lines of
integration. Fundamentally, vertical timestepping—directly prolong-
ing coarse simulation results—as introduced and analyzed by Zhang
et al. [2024] can be seen as an extreme form of the full-diagonal
Progressive Dynamics integration, where the integration angle is
fully vertical due to the vanishing timestep sizes.

In contrast, the VelPro integration method significantly mitigates
discontinuities. Compared to direct simulation at level 𝑙 + 1, the
VelPro integration method’s momentum update is defined as 𝑥𝑡

𝑙+1 =

𝑥𝑡
𝑙+1 + 𝑣𝑡𝑙+1ℎ, with the critical distinction being the way the velocity
term is handled. Intuitively, temporal coherence improves when
each timestep is consistently integrated from the prior state 𝑥𝑡

𝑙+1, and
the solve is warm-started from the same state. Neither full-diagonal
nor semi-diagonal satisfies this requirement. This gives a significant
improvement over the semi-diagonal and fully diagonal methods,
both of which face the aforementioned challenges in maintaining
temporal continuity.

6.2 Quantitative Metric for In-Level Temporal Continuity
So far, we have relied on qualitative visual observations to evalu-
ate continuity breaks. To quantitatively analyze and compare the
severity of continuity breaks across methods, we propose a new
computational measure. This measure provides a reliable tool for
assessing physical continuity, and identifying temporal artifacts of
arbitrary physical animations.
To do so, we reformulate forward numerical timestepping as a

discrete boundary value problem (BVP). This, in turn, enables the
evaluation of physical continuity (evaluated as the accuracy of sat-
isfying the timestep update at level 𝑙) of a proposed position, 𝑦𝑡

𝑙
,

generated by a Progressive Dynamics algorithm at timestep 𝑡 and
level 𝑙 , relative to its time-stencil neighbors at the same level, 𝑦𝑡−1

𝑙
and 𝑦𝑡+1

𝑙
. For single-level timestepping, the construction is straight-

forward. The standard (non-progressive) implicit Euler timestepping
update equation can be expressed as

𝑀 (𝑥𝑡+1 − 2𝑥𝑡 + 𝑥𝑡−1) + ℎ2∇𝐸 (𝑥𝑡+1) = 0, (10)

which corresponds to the optimality conditions of Equation 1.
We then define a midpoint state estimator, 𝜙𝑡 , that takes neigh-

boring positions 𝑥𝑡+1 and 𝑥𝑡−1 as input:

𝑥𝑡 = 𝜙𝑡 (𝑥𝑡+1, 𝑥𝑡−1) = 1
2 (𝑥𝑡+1 + 𝑥𝑡−1) + ℎ2

2 𝑀−1∇𝐸 (𝑥𝑡+1),

and now treat 𝑥𝑡 as evaluated via “known” positions 𝑥𝑡−1 and 𝑥𝑡+1,
rather than the usual forward integration of solving for 𝑥𝑡+1, based
on states at times 𝑡−1 and 𝑡 +1. Importantly, 𝑥𝑡 is “fully explicit,” and
so does not require linear nor nonlinear solves. Conceptually, 𝑥𝑡 is
given by the average of its adjacent time-stencil positions, corrected
by the energy gradient, which accounts for half the integrated force
contribution. In the context of Progressive Dynamics, we can apply
this same definition for levels 𝑙 < 𝐿, resulting in the following
evaluation of expected position at time 𝑡 and and level 𝑙 , given its
time-stencil neighbors on either side,

𝑥𝑡𝑙 = 𝜙𝑡𝑙 (𝑥𝑡+1𝑙 , 𝑥𝑡−1
𝑙) = 1

2 (𝑥𝑡+1𝑙 + 𝑥𝑡−1
𝑙) + ℎ2

2 𝑀−1
𝑙 ∇𝐹𝑙 (𝑥𝑡+1𝑙),

with 𝐹𝑙 being the per-level proxy energy at level 𝑙 , as defined in
Equation 2.

To measure our system’s continuity, we then can construct conti-
nuity errormeasures for each “proposed” position𝑦𝑡

𝑙
in the resolution-

time grid relative to its horizontal (time) neighbors, 𝑦𝑡−1
𝑙

and 𝑦𝑡+1
𝑙

,
as

𝑒𝑡𝑙 = ∥𝑦𝑡𝑙 − 𝜙𝑡𝑙 (𝑦𝑡+1𝑙 , 𝑦𝑡−1
𝑙)∥2𝑀𝑙

= ∥ 1
2 (𝑦𝑡+1𝑙 − 2𝑦𝑡𝑙 + 𝑦𝑡−1

𝑙) + ℎ2
2 𝑀−1

𝑙 ∇𝐹𝑙 (𝑦𝑡+1𝑙)∥2𝑀𝑙
.

(11)

This provides a per-timestep error with physical units of distance
(meters in our plots), integrated over the entire surface domain
using the mass matrix𝑀𝑙 (with units of [kg ·m2]) to ensure proper
scaling across different mesh resolutions.

Although the measure 𝑒𝑡
𝑙
is well defined, in practice, during Pro-

gressive Dynamics simulation, each timestep is solved to the same
tolerance, 𝜖 , with respect to the norm of the Newton decrement di-
vided by the timestep size ℎ [Li et al. 2021]. However, the gradient’s
norm then differs for each timestep, which means that Equation 10
is, of course, never perfectly satisfied numerically and instead varies
in residual across steps. Even for single-level direct timestepping,
the error 𝑒𝑡

𝑙
computed from Equation 11 will not vanish. Given that

each timestep solution inherently achieves a different tolerance
in this measure, we quantify the error of the original progressive
timestep solve, denoted by 𝑒𝑡

𝑙
, and use it to normalize 𝑒𝑡

𝑙
. We define

𝑒𝑡
𝑙
as:

𝑒𝑡𝑙 = ∥(𝑥𝑡+1𝑙 − 𝑥𝑡𝑙) + ℎ2𝑀−1
𝑙 ∇𝐹𝑙 (𝑥𝑡+1𝑙)∥2𝑀𝑙

,

where 𝑥𝑡
𝑙
is the term defining the specific Progressive Dynamics

integrator used (see Section 5.4 above). For practical application, we
then apply our continuity error normalized as:

𝑛𝑡𝑙 =
𝑒𝑡
𝑙

𝑒𝑡
𝑙

. (12)

Here, 𝑛𝑡
𝑙
is a dimensionless quantity that provides a standardized

measure of temporal continuity. We refer to Section 8.2.2 for detailed
analysis with concrete examples.

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

Progressive Dynamics++: A Framework for Stable, Continuous, and Consistent Animation Across Resolution and Time • 53:11

Fig. 10. Thin and Thick Materials: We simulate cloth with a 16-level hierarchy and ℎ = 0.01s, dropped onto a rigid spot collider with a frictionless ground.
For the thin material (0.07 mm thick, strain limit 6.8%, left panel), the full-diagonal integrator exhibits fine-level jittering due to continuity breakage. For the
thicker material (0.4 mm thick, right panel), it produces larger discontinuous jumps between folds. In contrast, the VelPro integrator yields stable, artifact-free
results with continuous animation across all levels, which captures detailed wrinkles and realistic sliding behavior in both material cases.

7 CONSISTENCY AND ENRICHMENT
The ability to achieve consistent refinement across levels is a fun-
damental feature and goal of Progressive Dynamics. Consistency
is primarily determined by a careful construction of the 𝑥𝑡

𝑙+1 term,
via temporally consistent extrapolation of positions and velocities
generated by the current and prior level solutions. Ideally, as de-
scribed in Section 4, this term should well-approximate predicted
mesh positions at 𝑥𝑡

𝑙+1 + 𝑣𝑡𝑙+1ℎ at the finer level 𝑙 + 1, by lagging
behind the explicit extrapolation of position and velocity from the
prior levels. Toward this goal, as covered above, the Progressive
Dynamics++ framework is divided into two parts: approximating
position and approximating velocity. In Zhang et al. [2024]’s ear-
lier semi-diagonal method, both position and velocity are extended
from level 𝑙 , introducing a factor of 2 for 𝑥𝑡

𝑙
, but ensuring that 𝑥𝑡

𝑙+1
remains consistent with 𝑥𝑡

𝑙
. However, by prolonging only the ve-

locity, 𝑣𝑡
𝑙
, from the prior level, as in the construction of the VelPro

integrator, the coefficient for 𝑥𝑡
𝑙
is reduced from 2 to 1, preserving

positional consistency while maximizing the enrichment of velocity
information. This forms the basis of the VelPro integration scheme.
A similar analysis applies to the full-diagonal integrator, where a
modified stencil is used for velocity updates.
Meanwhile, balancing enrichment and consistency involves an

inherent trade-off. For instance, as analyzed in Zhang et al. [2024]
purely vertical prolongation can generate perfectly consistent up-
sampled shapes, but lacks enrichment, as no additional physical
details can emerge at finer levels of resolution. In such cases, using
more levels and finer meshes becomes unnecessary. Conversely, di-
rect simulations provide increasingly enriched results with finer lev-
els, but lack any guarantee of geometric consistency. Thus, achieving
a balance between enrichment, by adding fine-scale details, and con-
sistency, by ensuring consistent bulk approximations across levels,

poses a fundamental trade-off. To evaluate the balance between con-
sistency and enrichment, across Progressive Dynamics integration
methods, we propose the following geometric consistency metric:

𝑑𝑡𝑙−1 = | |Π𝑙
𝑙−1 (𝑥𝑡𝑙) − 𝑥𝑡𝑙−1 | |2𝑀𝑙−1

, (13)

where Π𝑙
𝑙−1 (·) is the projection operator mapping any intermediate

level (𝑙 > 0) geometry 𝑥𝑡
𝑙
to the next coarser level 𝑙 − 1. We define

Π𝑙
𝑙−1 (·) =

((𝑈 𝑙−1
𝑙
)𝑇 (𝑈 𝑙−1

𝑙
))−1 (𝑈 𝑙−1

𝑙
)𝑇 , where 𝑈 𝑙−1

𝑙
denotes the

linear intrinsic part of the prolongation operator 𝑃𝑙−1
𝑙
(·). We refer

to Section 8.2.3 for detailed analysis and application of this measure.

8 EVALUATION
We implement all semi-diagonal, full-diagonal, and VelPro integra-
tion methods, as well as direct C-IPC simulation [Li et al. 2021], in
C++ for evaluation in a unified test bed. We apply Apple’s Acceler-
ate solver for linear solves and Eigen for remaining linear algebra
routines [Guennebaud et al. 2010]. We report our example statistics
and perform benchmarks on an Apple MacBook Pro with a M4 Max
chip and 128 GB of RAM.

8.1 Benchmark Examples
Bouncy Trampolines. We begin with a simple setup involving

three nearly rigid stiff shell objects (with Young’s modulus 𝑌 =

6 × 1010 Pa)—a spot, a wedge, and a cube—dropped onto an ex-
tremely thin bouncy trampoline (thickness = 0.01mm) under gravity.
In the first set of experiments, we use a 4-level hierarchy (as advo-
cated for by Zhang et al. [2024]) with ℎ = 0.01s as a sanity check for
stability and continuity using a hierarchy with a small number of
levels. As shown in Figure 7, when the wedge, with its sharp corner,
collides with the trampoline, it creates sharp wrinkling at the finest

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

53:12 • Jiayi Eris Zhang, Doug L. James, and Danny M. Kaufman

Fig. 11. Consistency Comparison: Asmore levels are introduced (e.g., here
an eight-level hierarchy), the semi-diagonal method suffers not only from
instabilities and discontinuities, but also violates the geometric consistency
goal of the Progressive Dynamics framework. In contrast, the full-diagonal
method remains per-frame consistent across levels, despite lacking continu-
ity, while our VelPro method achieves both continuity and consistency.

level. In this setting, all three PD integrators (semi-diagonal, full-
diagonal and VelPro integrators) produce artifact-free results. In a
comparable experiment, we now instead construct an 8-level hierar-
chy, keeping the coarsest and finest mesh resolutions unchanged, as
shown in Figure 8. In this setting, the stability issues analyzed above
with the semi-diagonal integrator are amplified and now clearly
evident, with significant jumps at certain frames (e.g., frame 40) in
the animation. For the full-diagonal integrator, subtle jitters emerge
in the finest-level results due to the full-diagonal method’s above-
discussed breaks in temporal continuity. In contrast, our proposed
VelPro integrator achieves continuous simulations with seamless
transitions across levels in both examples.

Cloth Drop Over Bunny. We next consider the behavior of a thin
cloth (0.07 mm thickness) simulation with an enforced 6.8% strain
limit, draped over a rigid bunny collider, under gravity with friction
(𝜇 = 0.3). For progressive simulations, we use an 8-level hierarchy
with ℎ = 0.01s, with mesh resolutions ranging up from 1.5K vertices
(coarsest level) to 90K vertices (finest level). In this example, with
lower friction, the cloth initially collides with the bunny and then
slides off. Applying the semi-diagonal integrator, we see expected

Fig. 12. Continuity Comparison: In the same setup as Figure 11, both
semi-diagonal and full-diagonal methods violate the continuity goal of the
Progressive Dynamics framework from different causes. The semi-diagonal
method breaks continuity due to generated instabilities. On the other hand,
the full-diagonal method, although stable, breaks continuity because its
independent Progressive Dynamics integration paths can arrive at adjacent
timestep frames, at the same level, with disagreement. In contrast, the
VelPromethod yields stable, artifact-free results with continuous transitions
across frames.

instabilities, leading to unexpected deformations and significant
animation jumps. In contrast, the full-diagonal integrator produces
stable results without explosions or other instability artifacts, but
subtle jitters again persist throughout the animation due to con-
tinuity breaks. In comparison, the VelPro integrator consistently
generates animations that are stable and free of visual artifacts,
demonstrating its robustness in this higher-level example. We visu-
ally compare the three methods in Figure 11 for this example. Here
we see frames with the semi-diagonal method’s instabilities, and
the VelPro method’s improved enrichment over the full-diagonal
method. In Figure 12 we correspondingly see the semi-diagonal
and full-diagonal method’s continuity breaks in comparison to the
physically continuous animation generated by the VelPro integrator.

Cloth Drop Over Spot. We extend the above experiment to a set-
ting with more wrinkling details. Here, the same cloth geometry
is dropped onto a rigid spot collider under gravity, with an under-
lying ground plane without friction. The ground plane introduces
additional wrinkling details when the cloth folds and forms more
pronounced wrinkles while sliding inward. To further investigate
stability, we applied a 16-level hierarchy with ℎ = 0.01s for this

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

Progressive Dynamics++: A Framework for Stable, Continuous, and Consistent Animation Across Resolution and Time • 53:13

example (reusing same coarsest and finest mesh resolutions as the
above bunny drop example). In the first set of experiments, the
same thin material (0.07 mm thick with a strain limit of 6.8%) is
used. Here, the full-diagonal integration method exhibits significant
jittering from continuity breakage, particularly at finer mesh levels,
as shown in the left panel of Figure 10. We then also simulate the
same drop with a thicker material (0.4 mm thick), as shown in the
right panel of Figure 10. In this case, the folds are larger and less
detailed, and the discontinuities now manifest themselves as larger
jumps between the folds rather than the previous small jitters in the
thinner-material example. Across both material setups, the VelPro
integrator remains stable, producing smooth and continuous anima-
tions without visible artifacts, and with intricate folds and detailed
sliding dynamics.

Waving Flag. To evaluate long-term consistency under persistent
and highly dynamic motion, we set up a flag example similar to
that of Zhang et al. [2024] over an extended time span. For com-
parison, we closely replicate the same cloth flag setup as Zhang et
al. [2024], using a thin material (0.4 mm thick) with a strain limit
of 10%. However, instead of employing a 4-level hierarchy with
ℎ = 0.04s as in Zhang et al. [2024], we retain the same coarsest (550
vertices) and finest (35K vertices) meshes but instead apply a 10-
level hierarchy, with intermediate levels of progressively increasing
resolutions. When an IPC simulation is run directly [Li et al. 2021]
on the example, the dynamic behavior of the waving flag (as ex-
pected) diverges rapidly across resolutions, resulting in inconsistent
deformations after only a short time span (see the inset in Section
1). At coarser levels, membrane locking in direct simulations also
generates significant simulation artifacts, making direct simulation
unsuitable for use as a progressive previewer.
Next, given the large number of levels used here, we can apply

this example as a stress test to evaluate the stability properties of
the semi-diagonal method of Zhang et al. [2024]. In Figure 5, frames
166 to 168 from the corresponding semi-diagonal simulation are
displayed in a grid from the coarsest level (level 0) to the finest level
(level 9). The first six coarser levels remain mostly stable, but insta-
bility becomes evident and progressively worsens starting from level
7. At the finest level, Zhang et al. [2024]’s semi-diagonal method
demonstrates severe instability, with the flag cloth experiencing
drastic deformation and forming irregular shapes. In contrast, with
the same setup, our newly proposed full-diagonal and VelPro inte-
grators remain stable, delivering animations free of visual artifacts
throughout the 20-second simulation; see Figure 6. Also see our
supplemental videos for animations.

Smashing Balloons. To evaluate a challenging scenario with high-
speed impact, extreme deformation, and large contacting areas, we
throw two happy face character balloons at each other in Figure 17.
Here, balloons approach from opposite directions, colliding head-on,
resulting in large deformations as they entangle and subsequently
detangle from each other. This highly dynamic interaction poses a
significant challenge for simulation stability and detail preservation.
To handle this complexity, we construct a 4-level hierarchy, with
the finest level consisting of 440K vertices and 0.9 million triangles,
using ℎ = 0.01s. To ensure that the coarsest level has sufficient
degrees of freedom for effective preview simulations, we used a

coarsest mesh with 50K vertices. The Progressive Dynamics frame-
work, equipped with our newly proposed VelPro integration method,
is applied to simulate this example. As shown in Figure 17, each
level of the hierarchy produces results with progressively enhanced
detail, capturing increasingly intricate wrinkles and deformations.
The animations’ transitions, such as times where the balloons en-
tangle and later detangle, consistently occur at the same moment
across all levels, providing animations across levels with geomet-
ric consistency, enrichment, and temporal continuity. At the finest
level, the animation captures highly detailed and natural wrinkles,
with artifact-free results. The final animation is production-ready,
offering animators a high-quality output that realistically captures
the dramatic interaction between the two balloons.

8.2 Comparisons and Analysis
8.2.1 Stability. Our benchmark examples collectively demonstrate
that the results of our experiments (with nonlinear contributions)
align with our theoretical findings (based on a linear analysis) on the
exponential growth of the level difference, 𝛿𝑙 , as the total number
of levels 𝐿 increases. Recall that our analysis highlights why the
semi-diagonal integrator of Zhang et al. [2024] performs reasonably
well with small numbers of levels: when 𝐿 is relatively small, the
level difference, 𝛿𝑙 , does not grow too large to be significantly per-
ceptible in many practical scenarios (e.g., Figure 7). This instability
behavior of the semi-diagonal method varies with simulation scene
setup, including factors of mesh resolutions and material properties.
Meanwhile, even as 𝐿 increases just a little more in applications, the
exponential growth of this level difference amplifies errors rapidly.
These errors then appear in the final animation results as jitters or,
in worse cases, significant explosion artifacts, as demonstrated in
Figures 5, 8, 11, and 12. In turn, they can also break continuity and
consistency. Overall, such resulting animations are not usable for
practical purposes. In contrast, the full-diagonal and VelPro integra-
tors, with stability in both resolution and time (as analyzed above),
remain stable across all benchmark examples without numerical
explosions, as illustrated in Figures 6, 7, 8, 10, 11 and 12.

when L < N

…
8.2.2 Temporal Continuity. As dis-
cussed in Section 6.1, the instability
of Zhang et al.’s [2024] semi-diagonal
integrator can then correspondingly
also break temporal continuity. On the
other hand, the full-diagonal integrator, when applied with a small
number of levels 𝐿, has a shorter diagonal integration path (bounded
by the number of levels 𝐿 when 𝐿 < 𝑁). This reduces not only
enrichment but also trajectory divergence, in the form of break-
ing temporal continuity, which can generate animation jitters and
jumps. Correspondingly, the results for the full-diagonal integrator
in Figures 6 and 7 are mostly continuous, with only minor, visually
imperceptible jumps. However, with a larger number of levels in
the hierarchy, or else different motions and/or materials, continuity
issues can become more significant for the full-diagonal integrator,
as shown in Figures 8, 10, 11 and 12.
To quantitatively analyze these temporal continuity breaks, we

use our proposed metric from Section 6.2. Figures 13 and 14 com-
pare continuity errors for a 4-level hierarchy using direct simulation,

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

53:14 • Jiayi Eris Zhang, Doug L. James, and Danny M. Kaufman

Fig. 13. Temporal Continuity Error Comparisons: In the 16-level cloth-
on-bunny example, our proposed quantitative continuity metric clearly
reveals temporal discontinuities in the full-diagonal method, while the
VelPro method maintains visually continuous frame transitions with corre-
sponding low error. This metric also precisely captures the exact moment of
cloth–bunny contact. See Section 8.2.2 for details.

and the fully-diagonal, semi-diagonal and VelPro integrators. We
simulate a thin cloth (0.07mm thick) pinned at two sides and draped
under gravity. For comparison, we also evaluate the same setup with
a 16-level hierarchy (using the same finest and coarsest meshes).
Evaluating 𝑛𝑡

𝑙
from (12), we solve all nonlinear Newton iterations

to a tight tolerance (norm < 10−4) for convergence. By construc-
tion, direct simulation yields a baseline of 𝑛𝑡

𝑙
= 1. Since the 4-level

hierarchy is below the semi-diagonal method’s instability thresh-
old in this specific case, its continuity error remains reasonable.
However, the full-diagonal integrator already exhibits a significant
continuity issue, both visually and quantitatively, particularly in the
16-level hierarchy, due to trajectory divergences during its longer
integration path, which matches our expectations. In contrast, the
VelPro integrator shows only a slight deviation from 𝑛𝑡

𝑙
= 1, demon-

strating significant continuity improvement within the Progressive
Dynamics++ framework.
Finally, we also evaluate the temporal continuity metric on the

cloth-dropped-on-bunny example (Figure 11) using a 16-level hi-
erarchy for both VelPro and full-diagonal integrators. The results
clearly show that the full-diagonal integrator is far less continuous,
and hence generates more jittering, in animation, at the finest level.
In particular, the temporal continuity metric accurately captures the
effects of physical transitions: before collisions and deformations,
𝑛𝑡
𝑙
remains at 1; after collisions, when jitters occur, the continuity

error increases accordingly.

8.2.3 Geometric Consistency and Enrichment. As analyzed in Sec-
tion 7, the semi-diagonal, full-diagonal, and VelPro integration meth-
ods are designed to produce consistent results with progressively
increasing detail. However, due to the instability issues inherent to
the semi-diagonal integration method, geometric consistency can
breakdown, leading to artifacts shown in Figure 11. Both the full-
diagonal and VelPro methods achieve qualitatively consistent results
frame by frame. However, the interaction between consistency and

Fig. 14. Temporal Continuity Error with Increased Levels:We compare
temporal continuity errors across 4-level hierarchies using direct simula-
tion, semi-diagonal, full-diagonal and VelPro methods. As expected, direct
simulation yields a baseline value of 𝑛𝑡 = 1 throughout, while the VelPro
method achieves the lowest continuity error among the three progressive
methods. To highlight the impact of increasing hierarchy depth, we also
show that the full-diagonal method exhibits a substantial rise in error when
scaling from 4 to 16 levels. See Section 8.2.2 for details.

enrichment often complicates the evaluation of their performance,
as discussed in Section 7.
Qualitatively, we observe that, given the same simulation setup

and number of levels, the VelPro integration method consistently
outperforms the semi-diagonal and full-diagonal ones by producing
results with richer detail, such as finer wrinkles. Moreover, we
observe that the VelPro integrator significantly mitigates the stability
and continuity issues observed in the other methods, as shown
in Figure 7. To quantify this observation, we use the geometric
consistency metric defined in (13), which effectively captures subtle
differences in enrichment between different methods.
We observe that while the VelPro integration method generally

achieves stable, continuous, and consistent results, one limitation re-
mains: not surprisingly, per-frame geometric consistency can break
for some extremely challenging scenarios. For example, maintaining
consistency in a large colliding pile-up of thin shell objects is one
such particularly difficult case. When we wish to further enhance
the consistency in such cases, we propose adding a small quadratic
consistency biasing term to our integrators. This allows users to
balance between consistency and enrichment as needed. Our such
modified potential energy per level is then

𝑊𝑙 (𝑥) = 𝐹𝑙 (𝑥) +𝑤 | |𝑥 − 𝑃𝑙−1
𝑙 𝑥𝑡+1𝑙−1 | |2𝑀𝑙

,

with 𝑤 ≥ 0 the consistency penalty weight. The above quadratic,
mass-weighted penalty then targets 𝑃𝑙−1

𝑙
𝑥𝑡+1
𝑙−1, and so encourages

consistency between solutions of current levels 𝑙 and next-coarser
levels 𝑙 − 1.
We evaluate the effectiveness of this consistency penalty in a

challenging jumble pile example, using a 3-level hierarchy with
ℎ = 0.04s. Here, we consider increasing penalty weights with
𝑤 = 0, 0.1, 0.25, 0.5. In this example, a set of very stiff (close-to-rigid),
polyhedral shell shapes are dropped onto a bouncy trampoline with
three of its corners pinned. This stress test for the general Progres-
sive Dynamics framework highlights the challenge of maintaining

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

Progressive Dynamics++: A Framework for Stable, Continuous, and Consistent Animation Across Resolution and Time • 53:15

Fig. 15. Increasing Consistency Weights in a Jumble Pile Example: We test consistency penalty weights (𝑤 = 0, 0.1, 0.25, 0.5) on a 3-level hierarchy with
a set of stiff polyhedral shells dropped onto a bouncy trampoline (three corners pinned, ℎ = 0.04s). This challenging setup stresses the Progressive Dynamics
framework’s ability to maintain per-frame consistency across resolutions. Without a penalty (𝑤 = 0), the simulation exhibits visible inconsistency across levels.
Adding even a small consistency penalty term (𝑤 = 0.1) significantly improves consistency, while larger weights further enhance cross-level consistency at the
cost of reduced enrichment.

Fig. 16. Measuring Consistency and Enrichment: Using the same setup
as Figure 15, the left plot shows that our geometric consistency metric
(Equation 13) effectively captures the break in consistency, in this example, in
the absence of a penalty term. As the penalty weight increases, consistency
improves, while the right plot shows a corresponding decrease in fine-level
wrinkle enrichment, which is also successfully captured by our metric.

per-frame consistency across resolutions. Without any consistency
penalty (that is, using the default PD potential energy 𝐹𝑙 (𝑥)), we see
the animation results break consistency in some frames over time.
However, adding even the smallest quadratic consistency penalty
term (e.g., 𝑤 = 0.1) significantly improves consistency. As 𝑤 in-
creases to 0.5, consistency improves further, as shown in Figure 15.
To quantify consistency, we apply the metric defined in (13) by pro-
jecting the finest-level geometry onto the coarsest level. The left
panel of Figure 16 illustrates the issue of broken consistency through

consistency error plots when the penalty term is absent. Conversely,
experiments with increasing penalty weights show that the metric
also reflects the level of enrichment: higher penalty weights con-
strain the system more, leading to less wrinkle enrichment at the
finest level.

8.2.4 Timing and Scalability. Our Progressive Dynamics++ frame-
work modifies PD integrators only for progressive advancement at
finer levels, and so leaves the underlying, coarsest-level preview
stepping unchanged across methods. As a result, the computation
timing for the coarsest-level preview remains identical to that of
the original Progressive Dynamics as in Zhang et al. [2024], which
is approximately twice as fast as a direct coarse simulation. For pro-
gressive advancement to finer levels, despite the change in the time
integration stencil, we observe no significant difference in speed
or convergence rate for the full-diagonal and VelPro integration
methods compared to the semi-diagonal integration method, except
when stability issues of the semi-diagonal integration method dom-
inate. Under such conditions, the semi-diagonal integration method
struggles to converge due to the drastically deformed and irregular,
non-smooth shapes in the 𝑥𝑡

𝑙
terms. Specifically, using the VelPro

integration method, we observe 30× and 55× speedups in the pre-
view simulation compared to the direct finest-level simulation for
the hat-toss (see Section 8.3 below) and smashing balloon examples,
respectively.

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

53:16 • Jiayi Eris Zhang, Doug L. James, and Danny M. Kaufman

At the same time, we emphasize that analysis of such speedups
(and scalability) for Progressive Dynamics is different from that in
standard simulation pipelines. At the finest level, the performance
of all three Progressive Dynamics methods is comparable to that
of the underlying finest-level direct simulator—neither better nor
worse. Speedup, and so scalability, is then considered here in terms
of the Progressive Dynamics++ framework’s ability to enable rapid
design iterations on coarse-level meshes. This allows animators to
iteratively explore designs with quick coarse-level solves (for large
speedups over otherwise necessary fine-level design iterations) first,
and then only pay the high-resolution simulation costs once, to
refine a finalized design.

8.3 Animation Design with Progressive Dynamics++
Five-Hats-Toss. In the five-hats-toss design and editing process

(see Figures 1 and 2), the Progressive Dynamics++ framework en-
ables users to efficiently perform preview simulations at coarse
levels, streamlining exploration and editing over variations in ani-
mation designs. In this example, we demonstrate its use in an ani-
mation design task using a four-level hierarchy, and a timestep of
ℎ = 0.01s. Here the animator’s goal is to throw five floppy hats from
a distance, and ensure that all hats land on a hook, with detailed
fabric deformations at the finest level. By simply specifying initial
conditions and a constant initial velocity for each hat, the hats fol-
low ballistic trajectories before colliding with the hooks. However,
once the hats make contact, the combined effects of gravity, friction,
and contact interactions between the five hats introduce significant
complexities. Tuning material parameters and initial conditions
to achieve perfect “toss success”, where all five hats land on the
hooks with pleasing deformations, is a tedious and time-consuming
trial-and-error process. With the new VelPro integrator enabled by
our proposed Progressive Dynamics++ framework, users can apply
coarsest-level preview animations to rapidly iterate through a wide
range of material parameters and initial conditions to capture the
desired and challenging-to-capture behavior. They can efficiently
identify parameter sets that achieve their successful toss under a va-
riety of conditions. Once a desired animation is finalized, Progressive
Dynamics progressively synthesizes production-quality animations
with millions of fine-scale vertices, capturing intricate deformation
details while maintaining consistency in achieving the five-hat-toss
outcome. Importantly, Progressive Dynamics++ provides integra-
tors with stable, continuous, and artifact-free previews at coarse
levels. In contrast, the original semi-diagonal method of Zhang et
al. [2024] struggles with jittering and stability issues, making it
unsuitable for handling delicate examples like this.

9 CONCLUSION
We have proposed Progressive Dynamics++, a general framework
for constructing a family of Progressive Dynamics integrators. To
do so, we have generalized Progressive Dynamics integrators, de-
fined targeted properties for them, and constructed new quantitative
measures for evaluating these properties across Progressive Dynam-
ics integrators, both new and prior. To ensure stable Progressive
Dynamic animation, we have carefully evaluated and defined the
necessary conditions for stable Progressive Dynamics integration

across time and resolution. Considering these conditions, we have
then applied the framework to design and evaluate a new VelPro inte-
gration method that provides stability across all LODs and timesteps,
and produces continuous animations without jumps or jittering arti-
facts. Across a wide range of benchmarks and challenging animation
design tasks, we have demonstrated the application of VelPro for
high-quality progressive animation design and look forward to fu-
ture extensions and improvements in Progressive Simulation via
the Progressive Dynamics++ framework.
Here important work remains to extend Progressive Dynamics’

application, beyond animation and VFX, to accurate physical sim-
ulation tasks. Exploring alternatives such as material fitting and
homogenization may help address cross-resolution material behav-
ior. Additionally, we see that variations in the stencils of Progressive
Dynamics integrators, within the Progressive Dynamics++ frame-
work, enable different degrees of parallelism. Since we do not yet
observe a strict trade-off, an interesting direction for future work is
whether new Progressive Dynamics integrators can jointly achieve
improved consistency, stability, and parallelism.

ACKNOWLEDGMENTS
Jiayi Eris Zhang is supported by the Stanford Graduate Fellowship,
the Roblox Graduate Fellowship, and the NVIDIA Graduate Fel-
lowship. Doug James acknowledges support from Adobe, SideFX,
NVIDIA, and the Department of Energy, National Nuclear Security
Administration under Award Number DE-NA0003968; Houdini soft-
ware courtesy of SideFX. We thank Zhenyuan Zhang for insightful
discussions and for proofreading all the appendix proofs.

REFERENCES
Yunfei Bai, Danny M. Kaufman, C. Karen Liu, and Jovan Popović. 2016. Artist-directed

dynamics for 2D animation. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–10.
David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings

of the 25th annual conference on Computer graphics and interactive techniques. 43–54.
Miklós Bergou, Saurabh Mathur, Max Wardetzky, and Eitan Grinspun. 2007. TRACKS:

Toward Directable Thin Shells. ACM Transactions on Graphics (TOG) 26, 3 (2007),
50–es.

Robert Bridson, Ronald Fedkiw, and John Anderson. 2002. Robust Treatment of Col-
lisions, Contact and Friction for Cloth Animation. ACM Trans. on Graph. 21 (05
2002).

Lan Chen, Juntao Ye, and Xiaopeng Zhang. 2021b. Multi-Feature Super-Resolution
Network for Cloth Wrinkle Synthesis. Journal of Computer Science and Technology
36 (2021), 478–493. https://doi.org/10.1007/s11390-021-1331-y

Zhen Chen, Hsiao-Yu Chen, Danny M Kaufman, Mélina Skouras, and Etienne Vouga.
2021a. Fine wrinkling on coarsely meshed thin shells. ACM Transactions on Graphics
(TOG) 40, 5 (2021), 1–32.

Zhenyu Chen, Rahul Narain, Eitan Grinspun, and Danny M. Kaufman. 2023. Complex
Shell Simulation with Contact. ACM Transactions on Graphics (TOG) 42, 4 (2023),
1–16.

S. Friedhoff, R. D. Falgout, T. V. Kolev, S. P. MacLachlan, and J. B. Schroder. 2013.
A Multigrid-in-Time Algorithm for Solving Evolution Equations in Parallel. In
Sixteenth Copper Mountain Conference on Multigrid Methods. https://parallel-in-
time.org/methods/mgrit.html

Martin J. Gander and Thibaut Lunet. 2024. Time Parallel Time Integration. SIAM -
Society for Industrial and Applied Mathematics. https://www.amazon.com/Time-
Parallel-Integration-Martin-Gander/dp/1611978017

Michael Garland and Paul S Heckbert. 1997. Surface simplification using quadric error
metrics. In Proceedings of the 24th annual conference on Computer graphics and
interactive techniques. 209–216.

Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete
shells. In Symposium on Computer Animation.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3.
Oshri Halimi, Egor Larionov, Zohar Barzelay, Philipp Herholz, and Tuur Stuyck. 2023.

PhysGraph: Physics-Based Integration Using Graph Neural Networks. arXiv preprint
arXiv:2301.11841 (2023). https://arxiv.org/abs/2301.11841

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

https://doi.org/10.1007/s11390-021-1331-y
https://parallel-in-time.org/methods/mgrit.html
https://parallel-in-time.org/methods/mgrit.html
https://www.amazon.com/Time-Parallel-Integration-Martin-Gander/dp/1611978017
https://www.amazon.com/Time-Parallel-Integration-Martin-Gander/dp/1611978017
https://arxiv.org/abs/2301.11841

Progressive Dynamics++: A Framework for Stable, Continuous, and Consistent Animation Across Resolution and Time • 53:17

Fig. 17. Happy Face Balloons with Detailed Enrichment: In this high-speed collision scenario, two character balloons entangle and detangle under
extreme deformation. Using a 4-level hierarchy, the VelPro integration method in the Progressive Dynamics++ framework captures increasingly intricate
wrinkles across levels while preserving consistent deformation, timing, and trajectories.

Fig. 18. Happy Face Balloons with Strong Consistency: From this al-
ternate viewpoint of the same animation shown in Figure 17, we see the
animation’s frames are consistent across resolutions and time, with match-
ing deformation and timing throughout.

Armin Kappeler, Seunghwan Yoo, Qiqin Dai, and Aggelos K Katsaggelos. 2016. Video
super-resolution with convolutional neural networks. IEEE transactions on compu-
tational imaging 2, 2 (2016), 109–122.

Ladislav Kavan, Dan Gerszewski, AdamWBargteil, and Peter-Pike Sloan. 2011. Physics-
inspired upsampling for cloth simulation in games. In ACM SIGGRAPH 2011 papers.
1–10.

Tae-Yong Kim, Vladimir Vendrovsky, and Nancy S. Pollard. 2013. Data-Driven Dynamic
Deformation Component Separation. ACM Transactions on Graphics (TOG) 32, 4
(2013), 1–9.

Zorah Lahner, Stefanie Wuhrer, and Hans-Peter Seidel. 2018. DeepWrinkles: Accurate
and Realistic Clothing Modeling. Computer Graphics Forum 37, 2 (2018), 361–373.

Tae Min Lee, Young Jin Oh, and In-Kwon Lee. 2019. Efficient Cloth Simulation
using Miniature Cloth and Upscaling Deep Neural Networks. arXiv preprint
arXiv:1907.03953 (2019). https://arxiv.org/abs/1907.03953

Cheng Li, Min Tang, Ruofeng Tong, Ming Cai, Jieyi Zhao, and Dinesh Manocha. 2020.
P-Cloth: Interactive Cloth Simulation on Multi-GPU Systems using Dynamic Ma-
trix Assembly and Pipelined Implicit Integrators. ACM Transaction on Graphics
(Proceedings of SIGGRAPH Asia) 39, 6 (December 2020), 180:1–15.

Jie Li, Gilles Daviet, Rahul Narain, Florence Bertails-Descoubes, Matthew Overby,
George E Brown, and Laurence Boissieux. 2018. An implicit frictional contact solver
for adaptive cloth simulation. ACM Transactions on Graphics (TOG) 37, 4 (2018),
1–15.

Minchen Li, DannyM. Kaufman, and Chenfanfu Jiang. 2021. Codimensional Incremental
Potential Contact. ACM Trans. Graph. 40, 4, Article 170 (jul 2021), 24 pages.

Jacques-Louis Lions, Yvon Maday, and Gabriel Turinici. 2001. A "parareal" in time
discretization of PDE’s. Comptes Rendus de l’Académie des Sciences - Series I -
Mathematics 332, 7 (2001), 661–668. https://doi.org/10.1016/S0764-4442(00)01793-6

Matthias Müller and Nuttapong Chentanez. 2010. Wrinkle Meshes. In Symposium on
Computer Animation. Madrid, Spain, 85–91.

Rahul Narain, Armin Samii, and James F. O’Brien. 2012. Adaptive Anisotropic Remesh-
ing for Cloth Simulation. ACM Trans. Graph. 31, 6, Article 152 (nov 2012), 10 pages.

Young Jin Oh, Tae Min Lee, and In-Kwon Lee. 2018. Hierarchical Cloth Simulation
Using Deep Neural Networks. In Proceedings of Computer Graphics International
(CGI). 139–146. https://doi.org/10.1145/3208159.3208175

Miguel Otaduy, Rasmus Tamstorf, Denis Steinemann, and Markus Gross. 2009. Implicit
Contact Handling for Deformable Objects. Comp. Graph. Forum 28 (04 2009).

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. 2018. PWC-Net: CNNs
for Optical Flow Using Pyramid, Warping, and Cost Volume. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 8934–8943.
https://doi.org/10.1109/CVPR.2018.00931

Rasmus Tamstorf. 2013. Derivation of discrete bending forces and their gradients.
Technical Report (2013).

Min Tang, Tongtong Wang, Zhongyuan Liu, Ruofeng Tong, and Dinesh Manocha. 2018.
I-Cloth: Incremental Collision Handling for GPU-Based Interactive Cloth Simulation.
ACM Transaction on Graphics (Proceedings of SIGGRAPH Asia) 37, 6 (November 2018),
204:1–10.

Zachary Teed and Jia Deng. 2020. RAFT: Recurrent All-Pairs Field Transforms for
Optical Flow. In Proceedings of the European Conference on Computer Vision (ECCV).
402–419. https://doi.org/10.1007/978-3-030-58555-6_24

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

https://arxiv.org/abs/1907.03953
https://doi.org/10.1016/S0764-4442(00)01793-6
https://doi.org/10.1145/3208159.3208175
https://doi.org/10.1109/CVPR.2018.00931
https://doi.org/10.1007/978-3-030-58555-6_24

53:18 • Jiayi Eris Zhang, Doug L. James, and Danny M. Kaufman

Philip Trettner and Leif Kobbelt. 2020. Fast and Robust QEF Minimization using
Probabilistic Quadrics. Computer Graphics Forum (2020). https://doi.org/10.1111/
cgf.13933

Etienne Vouga. 2024. libshell. https://github.com/evouga/libshell.
Xintao Wang, Kelvin CK Chan, Ke Yu, Chao Dong, and Chen Change Loy. 2019. EDVR:

Video Restoration with Enhanced Deformable Convolutional Networks. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). 1954–1963. https://doi.org/10.1109/CVPRW.2019.00247

Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and William T Freeman. 2019. Video
Enhancement with Task-Oriented Flow. In International Journal of Computer Vision
(IJCV), Vol. 127. 1106–1125. https://doi.org/10.1007/s11263-018-1136-7

Jiawang Yu and Zhendong Wang. 2024. Super-Resolution Cloth Animation with Spatial
and Temporal Coherence. ACM Transactions on Graphics (TOG) 43, 4 (2024), 105:1–
105:14. https://doi.org/10.1145/3658143

Jiayi Eris Zhang, Seungbae Bang, David IW Levin, and Alec Jacobson. 2020. Comple-
mentary Dynamics. ACM Transactions on Graphics (TOG) 39, 6 (2020), 1–11.

Jiayi Eris Zhang, Jérémie Dumas, Yun Fei, Alec Jacobson, Doug L James, and Danny M
Kaufman. 2023. Progressive Shell Quasistatics for Unstructured Meshes. ACM
Transactions on Graphics (TOG) 42, 6 (2023), 1–17.

Jiayi Eris Zhang, Jérémie Dumas, Yun (Raymond) Fei, Alec Jacobson, Doug L. James,
and Danny M. Kaufman. 2022. Progressive Simulation for Cloth Quasistatics. ACM
Trans. Graph. 41, 6, Article 218 (nov 2022), 16 pages. https://doi.org/10.1145/3550454.
3555510

Jiayi Eris Zhang, Doug James, and Danny M Kaufman. 2024. Progressive Dynamics for
Cloth and Shell Animation. ACM Transactions on Graphics (TOG) 43, 4 (2024), 1–18.

Meng Zhang and Jun Li. 2024. Neural Garment Dynamic Super-Resolution. arXiv
preprint arXiv:2412.06285 (2024). https://arxiv.org/abs/2412.06285

A PROOF OF EXPONENTIAL GROWTH OF 𝛿
Before proving Theorems 1 and 2, we first recall the setting and
clarify the intuition behind Theorem 1.
• The condition

𝑥𝑡𝑙 = 𝑃𝑙−1
𝑙 (2𝑥𝑡−1

𝑙−1 − 𝑥𝑡−2
𝑙−1) ∀𝑡, 𝑙 (14)

along with the boundary values {𝑥𝑡0}𝑡 ∈{0,1,...,𝑁 } , {𝑥0
𝑙
}𝑙∈{0,1,...,𝐿} ,

and {𝑣0
𝑙
}𝑙∈{0,1,...,𝐿} describes the diagonal stepping scheme, the

precomputed solutions at the coarsest level and the initial states
of all the levels. With this information, we can populate the entire
space-time grid for any given timestep 𝑡 and level 𝑙 .
• The formula

𝑥𝑡𝑙 = 𝑃𝑙−𝑛𝑙 ((𝑛 + 1)𝑥𝑡−𝑛𝑙−𝑛 − 𝑛𝑥𝑡−𝑛−1
𝑙−𝑛) ∀𝑡, 𝑙, 𝑛 (15)

suggests that multi-level diagonal timestepping essentially mir-
rors single-level horizontal timestepping. The main difference lies
in the application of the prolongation operator, which adjusts for
level differences.
• On the other hand, the condition

𝑥𝑡𝑙+1 = 𝑃𝑙𝑙+1𝑥
𝑡
𝑙 ∀𝑡, 𝑙 (16)

suggests that the solutions at different levels are perfectly con-
sistent at every timestep.

Proof of Theorem 1. We first show “⇒”. Let 𝑡, 𝑙, 𝑛 be arbitrary
and we assume that (15) always holds. By (14), we have

𝑥𝑡+1𝑙+1 = 𝑃𝑙𝑙+1 (2𝑥𝑡𝑙 − 𝑥𝑡−1
𝑙) = 𝑃𝑙𝑙+1 (2(𝑃𝑙−1

𝑙 (2𝑥𝑡−1
𝑙−1 − 𝑥𝑡−2

𝑙−1)) − 𝑥𝑡−1
𝑙)

= 4𝑃𝑙−1
𝑙+1 𝑥

𝑡−1
𝑙−1 − 2𝑃𝑙−1

𝑙+1 𝑥
𝑡−2
𝑙−1 − 𝑃𝑙𝑙+1𝑥𝑡−1

𝑙 .
(17)

In addition, (15) applied with 𝑛 = 2 yields

𝑥𝑡+1𝑙+1 = 𝑃𝑙−1
𝑙+1 (3𝑥𝑡−1

𝑙−1 − 2𝑥𝑡−2
𝑙−1). (18)

Combining (17) and (18), we get

𝑃𝑙𝑙+1 (𝑃𝑙−1
𝑙 𝑥𝑡−1

𝑙−1 − 𝑥𝑡−1
𝑙) = 0.

Since 𝑃𝑙
𝑙+1 has full rank, we must have 𝑥𝑡

𝑙+1 = 𝑃𝑙
𝑙+1𝑥

𝑡
𝑙
∀𝑡, 𝑙 .

Next we show “⇐”. Assume (16). By (14), we have that (15) holds
with 𝑛 = 1. Assume (15) holds for 𝑛 − 1 for all 𝑡, 𝑙 . Then by (16), for
all 𝑡, 𝑙 ,

𝑥𝑡𝑙 = 𝑃𝑙−𝑛+1𝑙 (𝑛𝑥𝑡−𝑛+1𝑙−𝑛+1 − (𝑛 − 1)𝑥𝑡−𝑛𝑙−𝑛+1)
= 𝑃𝑙−𝑛+1𝑙 (𝑛𝑃𝑙−𝑛𝑙−𝑛+1 (2𝑥𝑡−𝑛𝑙−𝑛 − 𝑥𝑡−𝑛−1

𝑙−𝑛) − (𝑛 − 1)𝑃𝑙−𝑛𝑙−𝑛+1𝑥
𝑡−𝑛
𝑙−𝑛)

= 𝑃𝑙−𝑛𝑙 ((𝑛 + 1)𝑥𝑡−𝑛𝑙−𝑛 − 𝑛𝑥𝑡−𝑛−1
𝑙−𝑛).

Therefore, (15) holds by induction. □

Proof of Theorem 2. Assume there exists (𝑡0, 𝑙0) such that𝑥𝑡0
𝑙0+1+

𝛿𝑙0+1 = 𝑃𝑙0
𝑙0+1𝑥

𝑡0
𝑙0

where 𝛿𝑙0+1 ≠ 0, and that for 𝑡 ∈ {𝑡0 − 1, 𝑡0} and
𝑙 ≥ 0, 𝑥𝑡

𝑙+1 = 𝑃𝑙
𝑙+1𝑥

𝑡
𝑙
, except when (𝑡, 𝑙) = (𝑡0, 𝑙0). It remains to prove

by induction that for any 𝑛 ≥ 1,

𝑥𝑡0+𝑛
𝑙0+𝑛 = (𝑛 + 1)𝑃𝑙0

𝑙0+𝑛𝑥
𝑡0
𝑙0
− 𝑛𝑃𝑙0

𝑙0+𝑛𝑥
𝑡0−1
𝑙0
+ (2𝑛 − 𝑛 − 1)𝑃𝑙0+1

𝑙0+𝑛𝛿𝑙0+1,
(19)

which indicates exponential growth of the error. The base case 𝑛 = 1
follows from (14). Suppose that (19) holds for 𝑛 − 1. Then by (14),

𝑥𝑡0+𝑛
𝑙0+𝑛 = 2𝑃𝑙0+𝑛−1

𝑙0+𝑛 𝑥𝑡0+𝑛−1
𝑙0+𝑛−1 − 𝑃

𝑙0+𝑛−1
𝑙0+𝑛 𝑥𝑡0+𝑛−2

𝑙0+𝑛−1 . (20)

The first term on the right-hand side of (20) can be computed further
using the induction hypothesis:

𝑥𝑡0+𝑛−1
𝑙0+𝑛−1 = 𝑛𝑃𝑙0

𝑙0+𝑛−1𝑥
𝑡0
𝑙0
− (𝑛 − 1)𝑃𝑙0

𝑙0+𝑛−1𝑥
𝑡0−1
𝑙0

+ (2𝑛−1 − 𝑛)𝑃𝑙0+1
𝑙0+𝑛−1𝛿𝑙0+1 .

(21)

On the other hand, the second term on the right-hand side of (20)
can be computed using Theorem 1. Since 𝑥𝑡

𝑙+1 = 𝑃𝑙
𝑙+1𝑥

𝑡
𝑙
holds for all

𝑙0 < 𝑙 ≤ 𝐿 and 𝑡 ∈ {𝑡0 − 1, 𝑡0}, Theorem 1 yields that

𝑥𝑡0+𝑛−2
𝑙0+𝑛−1 = (𝑛 − 1)𝑃𝑙0+1

𝑙0+𝑛−1𝑥
𝑡0
𝑙0+1 − (𝑛 − 2)𝑃𝑙0+1

𝑙0+𝑛−1𝑥
𝑡0−1
𝑙0+1

= (𝑛 − 1)𝑃𝑙0+1
𝑙0+𝑛−1 (𝑃

𝑙0
𝑙0+1𝑥

𝑡0
𝑙0
− 𝛿𝑙0+1) − (𝑛 − 2)𝑃𝑙0

𝑙0+𝑛−1𝑥
𝑡0−1
𝑙0

,

(22)

where in the last stepwe used our assumption 𝑥𝑡0
𝑙0+1+𝛿𝑙0+1 = 𝑃𝑙0

𝑙0+1𝑥
𝑡0
𝑙0
.

Combining (20), (21), and (22), and rearranging the terms leads to

𝑥𝑡0+𝑛
𝑙0+𝑛 = (𝑛 + 1)𝑃𝑙0

𝑙0+𝑛𝑥
𝑡0
𝑙0
− 𝑛𝑃𝑙0

𝑙0+𝑛𝑥
𝑡0−1
𝑙0

+ (2(2𝑛−1 − 𝑛) + (𝑛 − 1))𝑃𝑙0+1
𝑙0+𝑛𝛿𝑙0+1

= (𝑛 + 1)𝑃𝑙0
𝑙0+𝑛𝑥

𝑡0
𝑙0
− 𝑛𝑃𝑙0

𝑙0+𝑛𝑥
𝑡0−1
𝑙0
+ (2𝑛 − 𝑛 − 1)𝑃𝑙0+1

𝑙0+𝑛𝛿𝑙0+1,

which aligns with (19), as desired. □

Discussion. Single-level horizontal timestepping also uses a similar
time integration form, where (a simplified version of) the velocity
update is defined as 𝑥𝑡+1

𝑙
= 2𝑥𝑡

𝑙
−𝑥𝑡−1

𝑙
, ∀𝑡, 𝑙 . In the following, we ex-

plain the fundamental differences between horizontal timestepping
(single-level) and our diagonal stepping (multi-level) methods, par-
ticularly by highlighting that single-level horizontal timestepping
exhibits only linear error growth.

Proposition 3. For single-level horizontal timestepping, the ad-
dition of a perturbation 𝛿𝑙 to 𝑥𝑡𝑙 leads to a linear error growth over 𝑛
timesteps, rather than exponential.

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

https://doi.org/10.1111/cgf.13933
https://doi.org/10.1111/cgf.13933
https://github.com/evouga/libshell
https://doi.org/10.1109/CVPRW.2019.00247
https://doi.org/10.1007/s11263-018-1136-7
https://doi.org/10.1145/3658143
https://doi.org/10.1145/3550454.3555510
https://doi.org/10.1145/3550454.3555510
https://arxiv.org/abs/2412.06285

Progressive Dynamics++: A Framework for Stable, Continuous, and Consistent Animation Across Resolution and Time • 53:19

Proof. It is clear by induction that

𝑥𝑡𝑙 = (𝑛 + 1)𝑥𝑡−𝑛𝑙 − 𝑛𝑥𝑡−𝑛−1
𝑙 , ∀ 𝑛 ∈ {0, 1, . . . , 𝑡 − 1}.

Therefore, by adding a perturbation 𝛿𝑙 to 𝑥𝑡−𝑛𝑙
, after 𝑛 timesteps, the

induced error is (𝑛 + 1)𝛿𝑙 on 𝑥𝑡𝑙 , resulting in linear error growth. □

Proposition 3 indicates that a single-level horizontal implicit Eu-
ler timestepper experiences only linear error growth (modulo non-
linearity). In contrast, Theorem 1 describes the multilevel diagonal
stepper as performing similarly to the horizontal stepper, except for
the difference introduced by prolongation. However, this equiva-
lence holds only under conditions of perfect consistency, such as in
the simplified model where nonlinear solves are trivial. In practical
scenarios with approximate nonlinear solves, discrepancies between
solutions at different levels inevitably arise at each timestep, quan-
tified as | |𝑥𝑡

𝑙+1 − 𝑃𝑙𝑙+1𝑥𝑡𝑙 | |𝑀𝑙+1 > 0. Theorem 2 further suggests that
such discrepancies, when present, can propagate diagonally and
grow exponentially.

B STABILITY ANALYSIS FOR FULL-DIAGONAL TIME
INTEGRATION SCHEME

In this appendix, we show how the full-diagonal time integration
scheme addresses the stability issue by reintroducing the effects of
nonlinear solves into our analysis. Recall from (7) and (8) that in
this formulation, for 𝑙 ∈ {1, 2, . . . , 𝐿},

𝑥𝑡𝑙+1 = 𝑃𝑙𝑙+1 (2𝑥𝑡𝑙 − 𝑃𝑙−1
𝑙 𝑥𝑡−1

𝑙−1),
and

𝑥𝑡1 = 𝑃0
1 (2𝑥𝑡0 − 𝑥𝑡−1

0) .
Considering that an implicit Euler timestep is resolved through
minimization,

𝑥𝑡+1𝑙 = argmin
𝑥

1
2ℎ2 | |𝑥 − 𝑥

𝑡
𝑙 | |2𝑀𝑙

+ 𝐸𝑙 (𝑥), (23)

we may write 𝑥𝑡+1
𝑙

= 𝑥𝑡
𝑙
+ 𝛾𝑡+1

𝑙
, where 𝛾𝑡+1

𝑙
captures the nonlin-

ear component of the minimization problem. Furthermore, as the
timestep ℎ decreases, 𝑥𝑡+1

𝑙
approaches 𝑥𝑡

𝑙
more closely.

In the full-diagonal time integration regime, the recursive rela-
tions are thus given by

𝑥𝑡+1𝑙+1 = 𝑃𝑙𝑙+1 (2𝑥𝑡𝑙 − 𝑃𝑙−1
𝑙 𝑥𝑡−1

𝑙−1) + 𝛾𝑡+1𝑙+1 , ∀𝑡, ∀𝑙 ∈ {1, 2, . . . , 𝐿} (24)

and

𝑥𝑡+11 = 𝑃0
1 (2𝑥𝑡0 − 𝑥𝑡−1

0) + 𝛾𝑡+11 , ∀𝑡 . (25)

Along with the boundary values {𝑥𝑡0}𝑡 ∈{0,1,...,𝑁 } , {𝑥0
𝑙
}𝑙∈{0,1,...,𝐿} ,

and {𝑣0
𝑙
}𝑙∈{0,1,...,𝐿} , these relations uniquely determine the output

array {𝑥𝑡
𝑙
}𝑡 ∈{0,1,...,𝑁 }, 𝑙∈{0,1,...,𝐿} .

For our stability analysis, we estimate the fluctuation of the out-
put 𝑥𝑡

𝑙
given a perturbation of the boundary values, where for sim-

plicity we assume that the perturbation does not affect the values
{𝛾𝑡

𝑙
}𝑡 ∈{0,1,...,𝑁 }, 𝑙∈{0,1,...,𝐿} . Suppose that for some 𝑡0 ∈ {0, . . . , 𝑁 }, a

single boundary value 𝑥𝑡0
0 is replaced by 𝑥𝑡0

0 = 𝑥𝑡0
0 +𝛿0, and denote by

{𝑥𝑡
𝑙
}𝑡 ∈{0,1,...,𝑁 }, 𝑙∈{0,1,...,𝐿} the output determined by the recursive

relations above with the updated boundary values.

We define

𝑦𝑡𝑙 = 𝑥𝑡𝑙 − 𝑃𝑙−1
𝑙 𝑥𝑡−1

𝑙−1 and 𝑦𝑡𝑙 = 𝑥𝑡𝑙 − 𝑃𝑙−1
𝑙 𝑥𝑡−1

𝑙−1 . (26)

Also write their fluctuations as

Δ𝑥𝑡𝑙 = 𝑥𝑡𝑙 − 𝑥𝑡𝑙 and Δ𝑦𝑡𝑙 = 𝑦𝑡𝑙 − 𝑦𝑡𝑙 . (27)

The relation (24) then implies that

Δ𝑦𝑡+1𝑙+1 = 𝑃𝑙𝑙+1Δ𝑦
𝑡
𝑙 ,

and hence induction yields that for any 𝑡 > 𝑙 ,

Δ𝑦𝑡+1𝑙+1 = 𝑃1
𝑙+1Δ𝑦

𝑡−𝑙
1 .

Applying (25) and (26) gives

Δ𝑦𝑡−𝑙1 = 𝑃0
1 (Δ𝑥𝑡−𝑙−1

0 − Δ𝑥𝑡−𝑙−2
0).

Therefore, for each 𝑡, 𝑙 with 𝑡 > 𝑙 , there exists 𝜉𝑡,𝑙 such that | |𝜉𝑡,𝑙 | | ≤
| |𝛿0 | | and

Δ𝑦𝑡𝑙 = 𝑃0
𝑙 𝜉𝑡,𝑙 . (28)

Next, we show by induction on 𝑙 that there exists 𝜁𝑡,𝑙 such that
| |𝜁𝑡,𝑙 | | ≤ (𝑙 + 1) | |𝛿0 | | and

Δ𝑥𝑡𝑙 = 𝑃0
𝑙 𝜁𝑡,𝑙 . (29)

Indeed, the case 𝑙 = 0 follows by our assumption on the perturbation.
Suppose that (29) holds for 𝑙 − 1 and | |𝜁𝑡−1,𝑙−1 | | ≤ 𝑙 | |𝛿0 | |. Note that
(26) and (27) together yields

Δ𝑥𝑡𝑙 = Δ𝑦𝑡𝑙 + 𝑃𝑙−1
𝑙 Δ𝑥𝑡−1

𝑙−1 .

By (28) and the induction hypothesis, we have

Δ𝑥𝑡𝑙 = 𝑃0
𝑙 𝜉𝑡,𝑙 + 𝑃𝑙−1

𝑙 𝑃0
𝑙−1𝜁𝑡−1,𝑙−1 = 𝑃0

𝑙 (𝜉𝑡,𝑙 + 𝜁𝑡−1,𝑙−1),
where by triangle inequality,

| |𝜉𝑡,𝑙 + 𝜁𝑡−1,𝑙−1 | | ≤ | |𝜉𝑡,𝑙 | | + | |𝜁𝑡−1,𝑙−1 | | ≤ (𝑙 + 1) | |𝛿0 | |.
This proves (29) by setting 𝜁𝑡,𝑙 = 𝜉𝑡,𝑙 + 𝜁𝑡−1,𝑙−1.

Since 𝑃0
𝑙
has nonnegative entries with row sums bounded by one,

we obtain | |𝑃0
𝑙
| | ≤ √𝑛𝑙 ≤

√
𝑛𝐿 . We conclude from (29) that

| |Δ𝑥𝑡𝑙 | | ≤ | |𝑃0
𝑙 | | | |𝜁𝑡,𝑙 | | ≤

√
𝑛𝐿 (𝑙 + 1) | |𝛿0 | |,

which is the desired stability statement. The other cases of 𝑡 ≤ 𝑙 and
perturbing the values in {𝑥0

𝑙
}𝑙∈{0,1,...,𝐿} can be similarly established.

In other words, the nonlinear components of each timestep’s so-
lution contribute to only linear growth over time, ensuring stability.
On the other hand, the previous semi-diagonal time integration
scheme results in unstable exponential growth, which can be shown
analogously.

C STABILITY ANALYSIS FOR VELOCITY-ONLY
PROLONGATION TIME INTEGRATION

First, recall from (9) the construction of the update term using the
velocity-only prolongation time integration scheme, defined as

𝑥𝑡𝑙+1 = 𝑥𝑡𝑙+1 + 𝑃𝑙𝑙+1 (𝑥𝑡𝑙 − 𝑥𝑡−1
𝑙) . (30)

Meanwhile, considering the form of the implicit Euler timestep,

𝑥𝑡+1𝑙 = argmin
𝑥

1
2ℎ2 | |𝑥 − 𝑥

𝑡
𝑙 | |2𝑀𝑙

+ 𝐸𝑙 (𝑥), (31)

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

53:20 • Jiayi Eris Zhang, Doug L. James, and Danny M. Kaufman

we may write 𝑥𝑡+1
𝑙

= 𝑥𝑡
𝑙
+ 𝛾𝑡+1

𝑙
, where 𝛾𝑡+1

𝑙
captures the nonlinear

component of the minimization problem. It follows that

𝑥𝑡+1𝑙+1 = 𝑥𝑡𝑙+1 + 𝑃𝑙𝑙+1 (𝑥𝑡𝑙 − 𝑥𝑡−1
𝑙) + 𝛾𝑡+1𝑙+1 , ∀𝑡, 𝑙 . (32)

Here, the boundary values are given by {𝑥𝑡0}𝑡 ∈{0,1,...,𝑁 } ,
{𝑥0

𝑙
}𝑙∈{0,1,...,𝐿} , and {𝑣0

𝑙
}𝑙∈{0,1,...,𝐿} . Using

𝑣0
𝑙 =

𝑥0
𝑙
− 𝑥−1

𝑙

ℎ
, ∀𝑙 (33)

and the relation (32), the boundary values uniquely determine the
array of values {𝑥𝑡

𝑙
}𝑡 ∈{0,1,...,𝑁 }, 𝑙∈{0,1,...,𝐿} .

In the following, we analyze the stability of the output 𝑥𝑡
𝑙
with

respect to the boundary values, while assuming for simplicity that
the perturbation does not affect the values 𝛾𝑡

𝑙
. Suppose that for

some 𝑙0 ∈ {0, 1, . . . , 𝐿}, a single boundary value 𝑥0
𝑙0
is replaced by

𝑥0
𝑙0
= 𝑥0

𝑙0
+ 𝛿0, and denote by {𝑥𝑡

𝑙
}𝑡 ∈{0,1,...,𝑁 }, 𝑙∈{0,1,...,𝐿} the output

determined by the recursive relations above. In other words, we
have

𝑥𝑡+1𝑙+1 = 𝑥𝑡𝑙+1 + 𝑃𝑙𝑙+1 (𝑥𝑡𝑙 − 𝑥𝑡−1
𝑙) + 𝛾𝑡+1𝑙+1 , ∀𝑡, 𝑙 . (34)

Let
𝑦𝑡𝑙 = 𝑥𝑡𝑙 − 𝑥𝑡−1

𝑙 and 𝑦𝑡𝑙 = 𝑥𝑡𝑙 − 𝑥𝑡−1
𝑙 . (35)

Combining (32), (34), and (35) yields that

𝑦𝑡+1𝑙+1 − 𝑦𝑡+1𝑙+1 = 𝑃𝑙𝑙+1 (𝑦𝑡𝑙 − 𝑦𝑡𝑙),
and hence by induction, for 𝑡 ≥ 𝑙 ,

𝑦𝑡+1𝑙+1 − 𝑦𝑡+1𝑙+1 = 𝑃0
𝑙+1 (𝑦𝑡−𝑙0 − 𝑦𝑡−𝑙0),

and for 𝑡 < 𝑙 ,
𝑦𝑡+1𝑙+1 − 𝑦𝑡+1𝑙+1 = 𝑃0

𝑡+1 (𝑦0
𝑙−𝑡 − 𝑦0

𝑙−𝑡).
In the case 𝑡 ≥ 𝑙 , since the boundary values {𝑥𝑡0}𝑡 ∈{0,1,...,𝑁 } and
{𝑣0

𝑙
}𝑙∈{0,1,...,𝐿} are not perturbed, we have 𝑦𝑡−𝑙0 = 𝑦𝑡−𝑙0 and hence

𝑦𝑡+1
𝑙+1 = 𝑦𝑡+1

𝑙+1 . Suppose now that 𝑡 < 𝑙 . We have

| |𝑦𝑡+1𝑙+1 − 𝑦𝑡+1𝑙+1 | | ≤ | |𝑃0
𝑡+1 | | | |𝑦0

𝑙−𝑡 − 𝑦0
𝑙−𝑡 | |.

Since each prolongation operator 𝑃0
𝑡+1 has nonnegative entries with

row sums bounded by one, it holds | |𝑃0
𝑡+1 | | ≤

√
𝑛𝑡+1 ≤ √𝑛𝐿 . It

follows from our assumption on the perturbation 𝑥0
𝑙0
= 𝑥0

𝑙0
+ 𝛿0 that

| |𝑦𝑡+1
𝑙+1 −𝑦𝑡+1𝑙+1 | | ≤

√
𝑛𝐿 | |𝛿0 | | uniformly in 𝑡, 𝑙 . By (35) and the triangle

inequality,
| |𝑥𝑡𝑙 − 𝑥𝑡𝑙 | | ≤ (𝑡 + 1)√𝑛𝐿 | |𝛿0 | |, ∀𝑡, 𝑙,

showing the desired stability.
The stability with respect to other boundary values
{𝑥0

𝑙
}𝑙∈{0,1,...,𝐿} and {𝑣0

𝑙
}𝑙∈{0,1,...,𝐿} can be derived analogously.

ACM Trans. Graph., Vol. 44, No. 4, Article 53. Publication date: August 2025.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Progressive Simulation
	2.2 Stability of Time Integrators in Graphics
	2.3 Temporal Continuity
	2.4 Consistency and Enrichment
	2.5 Parallel-in-Time Multigrid Methods

	3 Background: Progressive Simulation
	3.1 Multiresolution Time Integration
	3.2 Proxy Energies and Prolongations
	3.3 Progressive Quasistatics and Dynamics

	4 Progressive Dynamics++ Framework
	5 Stability
	5.1 Test Model Problem (2D Mass-Spring System)
	5.2 Source of Instability
	5.3 Theoretical Results: Exponential Growth of
	5.4 Sufficient Conditions for Ensuring Stability

	6 Continuity
	6.1 Continuity Properties of Progressive Integrators
	6.2 Quantitative Metric for In-Level Temporal Continuity

	7 Consistency and Enrichment
	8 Evaluation
	8.1 Benchmark Examples
	8.2 Comparisons and Analysis
	8.3 Animation Design with Progressive Dynamics++

	9 Conclusion
	Acknowledgments
	References
	A Proof of Exponential Growth of
	B Stability Analysis for Full-Diagonal Time Integration Scheme
	C Stability Analysis for Velocity-Only Prolongation Time Integration

